These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 21722909)
1. Comparing columns for gas chromatography with the two-parameter model for retention prediction. Thewalim Y; Sadiktsis I; Colmsjö A J Chromatogr A; 2011 Aug; 1218(31):5305-10. PubMed ID: 21722909 [TBL] [Abstract][Full Text] [Related]
2. Retention models for programmed gas chromatography. Castello G; Moretti P; Vezzani S J Chromatogr A; 2009 Mar; 1216(10):1607-23. PubMed ID: 19081102 [TBL] [Abstract][Full Text] [Related]
3. Prediction of gas chromatographic retention time via an additive thermodynamic model. Karolat B; Harynuk J J Chromatogr A; 2010 Jul; 1217(29):4862-7. PubMed ID: 20554287 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the separation number of capillary columns in programmed temperature gas chromatographic analysis. Vezzani S; Moretti P; Castello G Anal Chim Acta; 2007 Sep; 599(1):151-61. PubMed ID: 17765075 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the separation characteristics of application-specific (volatile organic compounds) open-tubular columns for gas chromatography. Poole CF; Qian J; Kiridena W; Dekay C; Koziol WW J Chromatogr A; 2006 Nov; 1134(1-2):284-90. PubMed ID: 16996069 [TBL] [Abstract][Full Text] [Related]
6. Extension of the system constants database for open-tubular columns: system maps at low and intermediate temperatures for four new columns. Atapattu SN; Eggers K; Poole CF; Kiridena W; Koziol WW J Chromatogr A; 2009 Mar; 1216(10):1640-9. PubMed ID: 19081101 [TBL] [Abstract][Full Text] [Related]
7. Study of the gas chromatographic behavior of selected alcohols and amines. Thewalim Y; Bruno O; Colmsjö A Anal Bioanal Chem; 2011 Jan; 399(3):1335-45. PubMed ID: 21116618 [TBL] [Abstract][Full Text] [Related]
8. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening. Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787 [TBL] [Abstract][Full Text] [Related]
9. Retention indexes for temperature-programmed gas chromatography of polychlorinated biphenyls. Chu S; Hong CS Anal Chem; 2004 Sep; 76(18):5486-97. PubMed ID: 15362911 [TBL] [Abstract][Full Text] [Related]
10. [Retention index of essential oil in temperature-programmed capillary column gas chromatography]. Chang LP; Sheng LS; Yang MZ; An DK Yao Xue Xue Bao; 1989; 24(11):847-52. PubMed ID: 2618683 [TBL] [Abstract][Full Text] [Related]
11. Targeted multidimensional gas chromatography for the quantitative analysis of suspected allergens in fragrance products. Dunn MS; Vulic N; Shellie RA; Whitehead S; Morrison P; Marriott PJ J Chromatogr A; 2006 Oct; 1130(1):122-9. PubMed ID: 16934274 [TBL] [Abstract][Full Text] [Related]
12. Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography. Thewalim Y; Aldaeus F; Colmsjö A Anal Bioanal Chem; 2009 Jan; 393(1):327-34. PubMed ID: 18751687 [TBL] [Abstract][Full Text] [Related]
13. Solute descriptors for characterizing retention properties of open-tubular columns of different selectivity in gas chromatography at intermediate temperatures. Atapattu SN; Poole CF J Chromatogr A; 2008 Jun; 1195(1-2):136-45. PubMed ID: 18501372 [TBL] [Abstract][Full Text] [Related]
14. Prediction of retention times and peak widths in temperature-programmed gas chromatography using the finite element method. Aldaeus F; Thewalim Y; Colmsjö A J Chromatogr A; 2009 Jan; 1216(1):134-9. PubMed ID: 19081571 [TBL] [Abstract][Full Text] [Related]
15. Dithienyl benzothiadiazole derivatives: a new type of stationary phases for capillary gas chromatography. Sun T; Tian L; Li J; Qi M; Fu R; Huang X J Chromatogr A; 2013 Dec; 1321():109-18. PubMed ID: 24238708 [TBL] [Abstract][Full Text] [Related]
16. The use of silica nanoparticles for gas chromatographic separation. Na N; Cui X; De Beer T; Liu T; Tang T; Sajid M; Ouyang J J Chromatogr A; 2011 Jul; 1218(28):4552-8. PubMed ID: 21652043 [TBL] [Abstract][Full Text] [Related]
17. Application of the solvation parameter model in method development for analysis of residual solvents in pharmaceuticals. Liu Y; Hu CQ J Chromatogr A; 2009 Jan; 1216(1):86-91. PubMed ID: 19041980 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive two-dimensional gas chromatography in the analysis of volatile samples of natural origin: a multidisciplinary approach to evaluate the influence of second dimension column coated with mixed stationary phases on system orthogonality. Cordero C; Rubiolo P; Sgorbini B; Galli M; Bicchi C J Chromatogr A; 2006 Nov; 1132(1-2):268-79. PubMed ID: 16919643 [TBL] [Abstract][Full Text] [Related]
19. Rapid determination of thermodynamic parameters from one-dimensional programmed-temperature gas chromatography for use in retention time prediction in comprehensive multidimensional chromatography. McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ J Chromatogr A; 2014 Jan; 1325():204-12. PubMed ID: 24377740 [TBL] [Abstract][Full Text] [Related]
20. Predictions of comprehensive two-dimensional gas chromatography separations from isothermal data. Zhu S; He S; Worton DR; Goldstein AH J Chromatogr A; 2012 Apr; 1233():147-51. PubMed ID: 22398384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]