These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21723816)

  • 21. Translocation of double-strand DNA through a silicon oxide nanopore.
    Storm AJ; Chen JH; Zandbergen HW; Dekker C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051903. PubMed ID: 16089567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On nanopore DNA sequencing by signal and noise analysis of ionic current.
    Wen C; Zeng S; Zhang Z; Hjort K; Scheicher R; Zhang SL
    Nanotechnology; 2016 May; 27(21):215502. PubMed ID: 27095148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical inference for nanopore sequencing with a biased random walk model.
    Emmett KJ; Rosenstein JK; van de Meent JW; Shepard KL; Wiggins CH
    Biophys J; 2015 Apr; 108(8):1852-5. PubMed ID: 25902425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling nanopores for sequencing DNA.
    Comer JR; Wells DB; Aksimentiev A
    Methods Mol Biol; 2011; 749():317-58. PubMed ID: 21674382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distribution of DNA translocation times in solid-state nanopores.
    Li J; Talaga DS
    J Phys Condens Matter; 2010 Nov; 22(45):454129. PubMed ID: 21339615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative nanopore sequencing for mapping biochemical processes on DNA molecules.
    Kim Y; Noh C; Yu M; Bae M; Jo K
    Chem Commun (Camb); 2023 Jul; 59(61):9388-9391. PubMed ID: 37435665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of urea-induced internal denaturation of dsDNA using solid-state nanopores.
    Singer A; Kuhn H; Frank-Kamenetskii M; Meller A
    J Phys Condens Matter; 2010 Nov; 22(45):454111. PubMed ID: 21339599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level.
    Tan CS; Fleming AM; Ren H; Burrows CJ; White HS
    J Am Chem Soc; 2018 Oct; 140(43):14224-14234. PubMed ID: 30269492
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger's first-passage-time theory.
    Ling DY; Ling XS
    J Phys Condens Matter; 2013 Sep; 25(37):375102. PubMed ID: 23963318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable graphene quantum point contact transistor for DNA detection and characterization.
    Girdhar A; Sathe C; Schulten K; Leburton JP
    Nanotechnology; 2015 Mar; 26(13):134005. PubMed ID: 25765702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of structured single-strand DNA via solid-state nanopore.
    Liu SC; Li Q; Ying YL; Long YT
    Electrophoresis; 2019 Aug; 40(16-17):2112-2116. PubMed ID: 30912583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients.
    Bello J; Mowla M; Troise N; Soyring J; Borgesi J; Shim J
    Electrophoresis; 2019 Apr; 40(7):1082-1090. PubMed ID: 30580437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction prolonged DNA translocation through solid-state nanopores.
    Liang Z; Tang Z; Li J; Hu R; Yu D; Zhao Q
    Nanoscale; 2015 Jun; 7(24):10752-9. PubMed ID: 26035070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores.
    Hall AR; Scott A; Rotem D; Mehta KK; Bayley H; Dekker C
    Nat Nanotechnol; 2010 Dec; 5(12):874-7. PubMed ID: 21113160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current blockade in nanopores in the presence of double-stranded DNA and the microscopic mechanisms.
    Cui S
    J Phys Chem B; 2010 Feb; 114(5):2015-22. PubMed ID: 20070089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore.
    Chen X; Zhao X; Ma R; Hu Y; Cui C; Mi Z; Dou R; Pan D; Shan X; Wang L; Fan C; Lu X
    Small; 2022 Mar; 18(12):e2107237. PubMed ID: 35092143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion-Solvent Interactions under Confinement Hold the Key to Tuning the DNA Translocation Speeds in Polyelectrolyte-Functionalized Nanopores.
    Kumar A; Bakli C; Chakraborty S
    Langmuir; 2024 Apr; 40(14):7300-7309. PubMed ID: 38536237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling DNA Tug-of-War in a Dual Nanopore Device.
    Liu X; Zhang Y; Nagel R; Reisner W; Dunbar WB
    Small; 2019 Jul; 15(30):e1901704. PubMed ID: 31192541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of DNA translocations through solid-state nanopores.
    Verschueren DV; Jonsson MP; Dekker C
    Nanotechnology; 2015 Jun; 26(23):234004. PubMed ID: 25994084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-state nanopores towards single-molecule DNA sequencing.
    Goto Y; Akahori R; Yanagi I; Takeda KI
    J Hum Genet; 2020 Jan; 65(1):69-77. PubMed ID: 31420594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.