These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21724188)

  • 21. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
    Lillie JS; Liberson AS; Mix D; Schwarz KQ; Chandra A; Phillips DB; Day SW; Borkholder DA
    Cardiovasc Eng Technol; 2015 Mar; 6(1):49-58. PubMed ID: 26577102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
    Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH
    Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Propagation characteristics in distensible tubes containing a visco-elastic fluid.
    Kaimal MR
    J Biomech; 1981; 14(1):47-53. PubMed ID: 7217114
    [No Abstract]   [Full Text] [Related]  

  • 25. Tube law parametrization using in vitro data for one-dimensional blood flow in arteries and veins: TUBE LAW PARAMETRIZATION IN ARTERIES AND VEINS.
    Colombo C; Siviglia A; Toro EF; Bia D; Zócalo Y; Müller LO
    Int J Numer Method Biomed Eng; 2024 Apr; 40(4):e3803. PubMed ID: 38363555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical evaluation of blood viscosity affecting pulse wave propagation in a fluid-structure interaction model.
    He F; Hua L; Gao LJ
    Biomed Tech (Berl); 2015 Feb; 60(1):11-5. PubMed ID: 25720033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cross-sectional velocity profile on flow characteristics of arterial wall modeled as elastic and viscoelastic material.
    Hasan M; Patel BP; Pradyumna S
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3454. PubMed ID: 33751825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method.
    Stergiopulos N; Meister JJ; Westerhof N
    Ann Biomed Eng; 1994; 22(4):392-7. PubMed ID: 7998684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study.
    Gaddum N; Alastruey J; Chowienczyk P; Rutten MCM; Segers P; Schaeffter T
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H558-H567. PubMed ID: 28576835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro validation of finite element analysis of blood flow in deformable models.
    Kung EO; Les AS; Figueroa CA; Medina F; Arcaute K; Wicker RB; McConnell MV; Taylor CA
    Ann Biomed Eng; 2011 Jul; 39(7):1947-60. PubMed ID: 21404126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mathematical model of flow in a liquid-filled visco-elastic tube.
    Pontrelli G
    Med Biol Eng Comput; 2002 Sep; 40(5):550-6. PubMed ID: 12452416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models.
    Coccarelli A; Prakash A; Nithiarasu P
    Biomech Model Mechanobiol; 2019 Aug; 18(4):939-951. PubMed ID: 30900050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A multiscale approach for modelling wave propagation in an arterial segment.
    Pontrelli G
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):79-89. PubMed ID: 15203956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New method for estimating arterial pulse wave velocity at single site.
    Abdessalem KB; Flaud P; Zobaidi S
    Comput Methods Biomech Biomed Engin; 2018 Jan; 21(1):55-64. PubMed ID: 29334240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave propagation with different pressure signals: an experimental study on the latex tube.
    Ursino M; Artioli E; Gallerani M
    Med Biol Eng Comput; 1993 Jul; 31(4):363-71. PubMed ID: 8231298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.