These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21724233)
1. Diversity and community structure of culturable arsenic-resistant bacteria across a soil arsenic gradient at an abandoned tungsten-tin mining area. Valverde A; González-Tirante M; Medina-Sierra M; Santa-Regina I; García-Sánchez A; Igual JM Chemosphere; 2011 Sep; 85(1):129-34. PubMed ID: 21724233 [TBL] [Abstract][Full Text] [Related]
2. Structure and diversity of arsenic resistant bacteria in an old tin mine area of Thailand. Jareonmit P; Sajjaphan K; Sadowsky MJ J Microbiol Biotechnol; 2010 Jan; 20(1):169-78. PubMed ID: 20134249 [TBL] [Abstract][Full Text] [Related]
3. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Chang JS; Kim YH; Kim KW Appl Microbiol Biotechnol; 2008 Aug; 80(1):155-65. PubMed ID: 18560832 [TBL] [Abstract][Full Text] [Related]
4. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
5. Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. Bachate SP; Cavalca L; Andreoni V J Appl Microbiol; 2009 Jul; 107(1):145-56. PubMed ID: 19291237 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related]
7. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Cavalca L; Zanchi R; Corsini A; Colombo M; Romagnoli C; Canzi E; Andreoni V Syst Appl Microbiol; 2010 Apr; 33(3):154-64. PubMed ID: 20303688 [TBL] [Abstract][Full Text] [Related]
8. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Banerjee S; Datta S; Chattyopadhyay D; Sarkar P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of arsenic mobility by indigenous bacteria from mine tailings as response to organic supply. Lee JU; Lee SW; Chon HT; Kim KW; Lee JS Environ Int; 2009 Apr; 35(3):496-501. PubMed ID: 18789531 [TBL] [Abstract][Full Text] [Related]
10. [Phylogenetic diversity of culturable bacteria in the ancient salt deposits of the Yipinglang Salt Mine, P. R. China]. Chen YG; Li HM; Li QY; Chen W; Cui XL Wei Sheng Wu Xue Bao; 2007 Aug; 47(4):571-7. PubMed ID: 17944352 [TBL] [Abstract][Full Text] [Related]
11. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Huang A; Teplitski M; Rathinasabapathi B; Ma L Can J Microbiol; 2010 Mar; 56(3):236-46. PubMed ID: 20453910 [TBL] [Abstract][Full Text] [Related]
12. [Diversity and heavy-metal tolerance of bacteria isolated from Gejiu tin mining area of Yunnan]. Xiao W; Zhang S; Zhao Q; Wang Y; Lai Y; Li Z; Cui X Wei Sheng Wu Xue Bao; 2013 Nov; 53(11):1158-65. PubMed ID: 24617256 [TBL] [Abstract][Full Text] [Related]
13. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Huang H; Jia Y; Sun GX; Zhu YG Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880 [TBL] [Abstract][Full Text] [Related]
14. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
15. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. Gu Y; Wang Y; Sun Y; Zhao K; Xiang Q; Yu X; Zhang X; Chen Q BMC Microbiol; 2018 May; 18(1):42. PubMed ID: 29739310 [TBL] [Abstract][Full Text] [Related]
16. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. Fan H; Su C; Wang Y; Yao J; Zhao K; Wang Y; Wang G J Appl Microbiol; 2008 Aug; 105(2):529-39. PubMed ID: 18397256 [TBL] [Abstract][Full Text] [Related]
17. Slurry bioreactor modeling using a dissimilatory arsenate-reducing bacterium for remediation of arsenic-contaminated soil. Soda S; Kanzaki M; Yamamuara S; Kashiwa M; Fujita M; Ike M J Biosci Bioeng; 2009 Feb; 107(2):130-7. PubMed ID: 19217550 [TBL] [Abstract][Full Text] [Related]
18. Arsenic biotransformation in earthworms from contaminated soils. Button M; Jenkin GR; Harrington CF; Watts MJ J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532 [TBL] [Abstract][Full Text] [Related]
19. Biogeochemical changes induced in uranium mining waste pile samples by uranyl nitrate treatments under anaerobic conditions. Geissler A; Merroun M; Geipel G; Reuther H; Selenska-Pobell S Geobiology; 2009 Jun; 7(3):282-94. PubMed ID: 19476503 [TBL] [Abstract][Full Text] [Related]
20. Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, northern Chile. Campos VL; León C; Mondaca MA; Yañez J; Zaror C Arch Environ Contam Toxicol; 2011 Aug; 61(2):185-92. PubMed ID: 20859623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]