These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21724499)

  • 1. Online denoising method to handle intraindividual variability of signal-to-noise ratio in continuous glucose monitoring.
    Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2664-71. PubMed ID: 21724499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An online self-tunable method to denoise CGM sensor data.
    Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):634-41. PubMed ID: 19822467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.
    Guerra S; Facchinetti A; Sparacino G; Nicolao GD; Cobelli C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1658-69. PubMed ID: 22481799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetes technology and treatments in the paediatric age group.
    Shalitin S; Peter Chase H
    Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal glucose models for predicting subcutaneous glucose concentration in humans.
    Gani A; Gribok AV; Lu Y; Ward WK; Vigersky RA; Reifman J
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):157-65. PubMed ID: 19858035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple local models approach to accuracy improvement in continuous glucose monitoring.
    Barceló-Rico F; Bondia J; Díez JL; Rossetti P
    Diabetes Technol Ther; 2012 Jan; 14(1):74-82. PubMed ID: 21864018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the glucose sensor error.
    Facchinetti A; Del Favero S; Sparacino G; Castle JR; Ward WK; Cobelli C
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):620-9. PubMed ID: 24108706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced accuracy of continuous glucose monitoring by online extended kalman filtering.
    Facchinetti A; Sparacino G; Cobelli C
    Diabetes Technol Ther; 2010 May; 12(5):353-63. PubMed ID: 20388045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series.
    Sparacino G; Zanderigo F; Corazza S; Maran A; Facchinetti A; Cobelli C
    IEEE Trans Biomed Eng; 2007 May; 54(5):931-7. PubMed ID: 17518291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms.
    Ramani S; Blu T; Unser M
    IEEE Trans Image Process; 2008 Sep; 17(9):1540-54. PubMed ID: 18701393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving accuracy and precision of glucose sensor profiles: retrospective fitting by constrained deconvolution.
    Del Favero S; Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1044-53. PubMed ID: 24658229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.
    Pérez-Gandía C; Facchinetti A; Sparacino G; Cobelli C; Gómez EJ; Rigla M; de Leiva A; Hernando ME
    Diabetes Technol Ther; 2010 Jan; 12(1):81-8. PubMed ID: 20082589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Blood Glucose Measurements to Calibrate Subcutaneous Glucose Sensors: A Bayesian Multiday Framework.
    Acciaroli G; Vettoretti M; Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):587-595. PubMed ID: 28541194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online Calibration of Glucose Sensors From the Measured Current by a Time-Varying Calibration Function and Bayesian Priors.
    Vettoretti M; Facchinetti A; Del Favero S; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1631-41. PubMed ID: 25915955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian methods for FMRI time-series analysis using a nonstationary model for the noise.
    Oikonomou VP; Tripoliti EE; Fotiadis DI
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):664-74. PubMed ID: 20123577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time continuous glucose monitoring using GuardianRT: from research to clinical practice.
    Tubiana-Rufi N; Riveline JP; Dardari D
    Diabetes Metab; 2007 Dec; 33(6):415-20. PubMed ID: 17988918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of postaverage SNR from evoked responses under nonstationary noise.
    Silva I
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2123-30. PubMed ID: 19403358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model to assess the variability of blood glucose time series in diabetic patients self-monitoring.
    Magni P; Bellazzi R
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):977-85. PubMed ID: 16761824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive Kalman filter for ECG signal enhancement.
    Vullings R; de Vries B; Bergmans JW
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1094-103. PubMed ID: 21156383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ECG denoising and compression using a modified extended Kalman filter structure.
    Sayadi O; Shamsollahi MB
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2240-8. PubMed ID: 18713693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.