These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21724619)

  • 1. Coping with variability in small neuronal networks.
    Calabrese RL; Norris BJ; Wenning A; Wright TM
    Integr Comp Biol; 2011 Dec; 51(6):845-55. PubMed ID: 21724619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constancy and variability in the output of a central pattern generator.
    Norris BJ; Wenning A; Wright TM; Calabrese RL
    J Neurosci; 2011 Mar; 31(12):4663-74. PubMed ID: 21430165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of presynaptic activity and synaptic strength interact to produce motor output.
    Wright TM; Calabrese RL
    J Neurosci; 2011 Nov; 31(48):17555-71. PubMed ID: 22131417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals.
    Günay C; Doloc-Mihu A; Lamb DG; Calabrese RL
    eNeuro; 2019; 6(4):. PubMed ID: 31270128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.
    Norris BJ; Weaver AL; Morris LG; Wenning A; García PA; Calabrese RL
    J Neurophysiol; 2006 Jul; 96(1):309-26. PubMed ID: 16611849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2983-91. PubMed ID: 17728387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.
    Norris BJ; Weaver AL; Wenning A; García PS; Calabrese RL
    J Neurophysiol; 2007 Nov; 98(5):2992-3005. PubMed ID: 17804574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator.
    Roffman RC; Norris BJ; Calabrese RL
    J Neurophysiol; 2012 Mar; 107(6):1681-93. PubMed ID: 22190622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a model to assess the role of the spatiotemporal pattern of inhibitory input and intrasegmental electrical coupling in the intersegmental and side-to-side coordination of motor neurons by the leech heartbeat central pattern generator.
    García PS; Wright TM; Cunningham IR; Calabrese RL
    J Neurophysiol; 2008 Sep; 100(3):1354-71. PubMed ID: 18579654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bringing up the rear: new premotor interneurons add regional complexity to a segmentally distributed motor pattern.
    Wenning A; Norris BJ; Doloc-Mihu A; Calabrese RL
    J Neurophysiol; 2011 Nov; 106(5):2201-15. PubMed ID: 21775711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal competition for action potential initiation sites in a circuit controlling simple learning.
    Cruz GE; Sahley CL; Muller KJ
    Neuroscience; 2007 Aug; 148(1):65-81. PubMed ID: 17644266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea.
    Vehovszky A ; Elliott CJ
    J Neurophysiol; 2001 Aug; 86(2):792-808. PubMed ID: 11495951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A specific synaptic pathway activates a conditional plateau potential underlying protraction phase in the Aplysia feeding central pattern generator.
    Dembrow NC; Jing J; Brezina V; Weiss KR
    J Neurosci; 2004 Jun; 24(22):5230-8. PubMed ID: 15175393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Outputs of radula mechanoafferent neurons in Aplysia are modulated by motor neurons, interneurons, and sensory neurons.
    Rosen SC; Miller MW; Cropper EC; Kupfermann I
    J Neurophysiol; 2000 Mar; 83(3):1621-36. PubMed ID: 10712484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of coordination in distributed neural circuits: encoding coordinating information.
    Smarandache-Wellmann C; Grätsch S
    J Neurosci; 2014 Apr; 34(16):5627-39. PubMed ID: 24741053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network.
    Masino MA; Calabrese RL
    J Neurophysiol; 2002 Mar; 87(3):1572-85. PubMed ID: 11877527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. II. Role of identified interneurons.
    Wittenberg G; Kristan WB
    J Neurophysiol; 1992 Nov; 68(5):1693-707. PubMed ID: 1479439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heartbeat control in leeches. II. Fictive motor pattern.
    Wenning A; Hill AA; Calabrese RL
    J Neurophysiol; 2004 Jan; 91(1):397-409. PubMed ID: 13679405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor pattern specification by dual descending pathways to a lobster rhythm-generating network.
    Combes D; Meyrand P; Simmers J
    J Neurosci; 1999 May; 19(9):3610-9. PubMed ID: 10212319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.