BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21724910)

  • 1. Ceramide-1-phosphate, a new mediator of development and survival in retina photoreceptors.
    Miranda GE; Abrahan CE; Agnolazza DL; Politi LE; Rotstein NP
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6580-8. PubMed ID: 21724910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingosine-1-phosphate is a key regulator of proliferation and differentiation in retina photoreceptors.
    Miranda GE; Abrahan CE; Politi LE; Rotstein NP
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4416-28. PubMed ID: 19357361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid.
    Politi LE; Rotstein NP; Carri NG
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):3008-15. PubMed ID: 11687549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors.
    Abrahan CE; Miranda GE; Agnolazza DL; Politi LE; Rotstein NP
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1171-80. PubMed ID: 19797232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docosahexaenoic acid promotes photoreceptor differentiation without altering Crx expression.
    Garelli A; Rotstein NP; Politi LE
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3017-27. PubMed ID: 16799048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone morphogenetic protein 7 increases chick photoreceptor outer segment initiation.
    Sehgal R; Andres DJ; Adler R; Belecky-Adams TL
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3625-34. PubMed ID: 16877437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of the postnatal rat retina in vitro: quantitative RT-PCR analyses of mRNA expression for photoreceptor proteins.
    Liljekvist-Larsson I; Törngren M; Abrahamson M; Johansson K
    Mol Vis; 2003 Dec; 9():657-64. PubMed ID: 14685147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic acid promotes apoptosis and differentiation in photoreceptors by activating the P38 MAP kinase pathway.
    De Genaro P; Simón MV; Rotstein NP; Politi LE
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3143-56. PubMed ID: 23580485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout.
    Candal E; Anadón R; DeGrip WJ; Rodríguez-Moldes I
    Brain Res Dev Brain Res; 2005 Jan; 154(1):101-19. PubMed ID: 15617760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture.
    Rotstein NP; Politi LE; Aveldaño MI
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2750-8. PubMed ID: 9856786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The beta-adrenergic receptor antagonist metipranolol blunts zinc-induced photoreceptor and RPE apoptosis.
    Osborne NN; Wood JP
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3178-86. PubMed ID: 16799065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF19 exhibits neuroprotective effects on adult mammalian photoreceptors in vitro.
    Siffroi-Fernandez S; Felder-Schmittbuhl MP; Khanna H; Swaroop A; Hicks D
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1696-704. PubMed ID: 18385093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina.
    Kassen SC; Thummel R; Campochiaro LA; Harding MJ; Bennett NA; Hyde DR
    Exp Eye Res; 2009 Jun; 88(6):1051-64. PubMed ID: 19450453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic acid produces rod photoreceptor selective apoptosis in developing mammalian retina.
    Söderpalm AK; Fox DA; Karlsson JO; van Veen T
    Invest Ophthalmol Vis Sci; 2000 Mar; 41(3):937-47. PubMed ID: 10711716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of photoreceptor potential from retinal progenitor cell cultures, despite improvements in survival.
    Mansergh FC; Vawda R; Millington-Ward S; Kenna PF; Haas J; Gallagher C; Wilson JH; Humphries P; Ader M; Farrar GJ
    Exp Eye Res; 2010 Oct; 91(4):500-12. PubMed ID: 20637750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramide is a mediator of apoptosis in retina photoreceptors.
    German OL; Miranda GE; Abrahan CE; Rotstein NP
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1658-68. PubMed ID: 16565407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of functional photoreceptor phenotype by exogenous Crx expression in mouse retinal stem cells.
    Jomary C; Jones SE
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):429-37. PubMed ID: 18172122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle regulation in retinal progenitors by glia-derived neurotrophic factor and docosahexaenoic acid.
    Insua MF; Garelli A; Rotstein NP; German OL; Arias A; Politi LE
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2235-44. PubMed ID: 12714666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of light-sensitive photoreceptor phenotypes by genetic modification of human adult ocular stem cells with Crx.
    Jomary C; Jones SE; Lotery AJ
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):1181-9. PubMed ID: 19850845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human neural progenitor cells promote photoreceptor survival in retinal explants.
    Englund-Johansson U; Mohlin C; Liljekvist-Soltic I; Ekström P; Johansson K
    Exp Eye Res; 2010 Feb; 90(2):292-9. PubMed ID: 19931247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.