BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21725236)

  • 1. Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models.
    Schultz JC; Segal N; Caldwell E; Kolbeck J; McKnite S; Lebedoff N; Zviman M; Aufderheide TP; Yannopoulos D
    Crit Care Med; 2011 Dec; 39(12):2705-10. PubMed ID: 21725236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled pauses at the initiation of sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitate neurological and cardiac recovery after 15 mins of untreated ventricular fibrillation.
    Yannopoulos D; Segal N; McKnite S; Aufderheide TP; Lurie KG
    Crit Care Med; 2012 May; 40(5):1562-9. PubMed ID: 22430233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium nitroprusside enhanced cardiopulmonary resuscitation improves survival with good neurological function in a porcine model of prolonged cardiac arrest.
    Yannopoulos D; Matsuura T; Schultz J; Rudser K; Halperin HR; Lurie KG
    Crit Care Med; 2011 Jun; 39(6):1269-74. PubMed ID: 21358401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium nitroprusside-enhanced cardiopulmonary resuscitation facilitates intra-arrest therapeutic hypothermia in a porcine model of prolonged ventricular fibrillation.
    Debaty G; Matsuura TR; Bartos JA; Rees JN; McKnite SH; Lick M; Boucher F; Yannopoulos D
    Crit Care Med; 2015 Apr; 43(4):849-55. PubMed ID: 25525755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest.
    Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K
    Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure.
    Metzger AK; Herman M; McKnite S; Tang W; Yannopoulos D
    Crit Care Med; 2012 Jun; 40(6):1851-6. PubMed ID: 22487997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium nitroprusside enhanced cardiopulmonary resuscitation prevents post-resuscitation left ventricular dysfunction and improves 24-hour survival and neurological function in a porcine model of prolonged untreated ventricular fibrillation.
    Schultz J; Segal N; Kolbeck J; Caldwell E; Thorsgard M; McKnite S; Aufderheide TP; Lurie KG; Yannopoulos D
    Resuscitation; 2011 Dec; 82 Suppl 2(0 2):S35-40. PubMed ID: 22208176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium nitroprusside enhanced cardiopulmonary resuscitation (SNPeCPR) improves vital organ perfusion pressures and carotid blood flow in a porcine model of cardiac arrest.
    Schultz J; Segal N; Kolbeck J; McKnite S; Caldwell E; Yannopoulos D
    Resuscitation; 2012 Mar; 83(3):374-7. PubMed ID: 21864483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium nitroprusside enhanced cardiopulmonary resuscitation improves short term survival in a porcine model of ischemic refractory ventricular fibrillation.
    Yannopoulos D; Bartos JA; George SA; Sideris G; Voicu S; Oestreich B; Matsuura T; Shekar K; Rees J; Aufderheide TP
    Resuscitation; 2017 Jan; 110():6-11. PubMed ID: 27771299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From laboratory science to six emergency medical services systems: New understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest.
    Aufderheide TP; Alexander C; Lick C; Myers B; Romig L; Vartanian L; Stothert J; McKnite S; Matsuura T; Yannopoulos D; Lurie K
    Crit Care Med; 2008 Nov; 36(11 Suppl):S397-404. PubMed ID: 20449900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reperfusion injury protection during Basic Life Support improves circulation and survival outcomes in a porcine model of prolonged cardiac arrest.
    Debaty G; Lurie K; Metzger A; Lick M; Bartos JA; Rees JN; McKnite S; Puertas L; Pepe P; Fowler R; Yannopoulos D
    Resuscitation; 2016 Aug; 105():29-35. PubMed ID: 27211835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of the impedance threshold device improves survival rate and neurological outcome in a swine model of asphyxial cardiac arrest*.
    Pantazopoulos IN; Xanthos TT; Vlachos I; Troupis G; Kotsiomitis E; Johnson E; Papalois A; Skandalakis P
    Crit Care Med; 2012 Mar; 40(3):861-8. PubMed ID: 21983368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-Tidal CO2-Guided Chest Compression Delivery Improves Survival in a Neonatal Asphyxial Cardiac Arrest Model.
    Hamrick JT; Hamrick JL; Bhalala U; Armstrong JS; Lee JH; Kulikowicz E; Lee JK; Kudchadkar SR; Koehler RC; Hunt EA; Shaffner DH
    Pediatr Crit Care Med; 2017 Nov; 18(11):e575-e584. PubMed ID: 28817508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of nitric oxide improves coronary perfusion pressure and return of spontaneous circulation in a porcine cardiopulmonary resuscitation model.
    Krismer AC; Lindner KH; Wenzel V; Rainer B; Mueller G; Lingnau W
    Crit Care Med; 2001 Mar; 29(3):482-6. PubMed ID: 11373408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic directed cardiopulmonary resuscitation improves short-term survival from ventricular fibrillation cardiac arrest.
    Friess SH; Sutton RM; Bhalala U; Maltese MR; Naim MY; Bratinov G; Weiland TR; Garuccio M; Nadkarni VM; Becker LB; Berg RA
    Crit Care Med; 2013 Dec; 41(12):2698-704. PubMed ID: 23887237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transthoracic application of electrical cardiopulmonary resuscitation for treatment of cardiac arrest.
    Wang H; Brewer JE; Guan J; Gilman B; Sun S; Li Y; Castillo C; Kroll MW; Weil MH; Tang W
    Crit Care Med; 2008 Nov; 36(11 Suppl):S458-66. PubMed ID: 20449911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve.
    Raedler C; Voelckel WG; Wenzel V; Bahlmann L; Baumeier W; Schmittinger CA; Herff H; Krismer AC; Lindner KH; Lurie KG
    Anesth Analg; 2002 Dec; 95(6):1496-502, table of contents. PubMed ID: 12456407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest.
    Moore JC; Salverda B; Rojas-Salvador C; Lick M; Debaty G; G Lurie K
    Resuscitation; 2021 Jan; 158():220-227. PubMed ID: 33027619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amplitude spectrum area correctly predicts improved resuscitation and facilitated defibrillation with head cooling.
    Tsai MS; Barbut D; Guan J; Bisera J; Inderbitzen B; Weil MH; Tang W
    Crit Care Med; 2008 Nov; 36(11 Suppl):S413-7. PubMed ID: 20449903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of epinephrine/norepinephrine on end-tidal carbon dioxide concentration, coronary perfusion pressure and pulmonary arterial blood flow during cardiopulmonary resuscitation.
    Lindberg L; Liao Q; Steen S
    Resuscitation; 2000 Jan; 43(2):129-40. PubMed ID: 10694173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.