These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthesis, structure, and reactivity of tris(amidate) mono(amido) and tetrakis(amidate) complexes of group 4 transition metals. Payne PR; Thomson RK; Medeiros DM; Wan G; Schafer LL Dalton Trans; 2013 Nov; 42(44):15670-7. PubMed ID: 24045287 [TBL] [Abstract][Full Text] [Related]
4. An easy-to-use, regioselective, and robust bis(amidate) titanium hydroamination precatalyst: mechanistic and synthetic investigations toward the preparation of tetrahydroisoquinolines and benzoquinolizine alkaloids. Zhang Z; Leitch DC; Lu M; Patrick BO; Schafer LL Chemistry; 2007; 13(7):2012-22. PubMed ID: 17131447 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of group 4 metal amides with new C2-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization. Zi G; Zhang F; Xiang L; Chen Y; Fang W; Song H Dalton Trans; 2010 May; 39(17):4048-61. PubMed ID: 20390168 [TBL] [Abstract][Full Text] [Related]
6. Anti-Markovnikov intermolecular hydroamination: a bis(amidate) titanium precatalyst for the preparation of reactive aldimines. Zhang Z; Schafer LL Org Lett; 2003 Nov; 5(24):4733-6. PubMed ID: 14627427 [TBL] [Abstract][Full Text] [Related]
7. Lanthanide and group 4 metal complexes with new chiral biaryl-based NNO-donor ligands. Zi G; Wang Q; Xiang L; Song H Dalton Trans; 2008 Nov; (43):5930-44. PubMed ID: 19082049 [TBL] [Abstract][Full Text] [Related]
8. Use of group 4 bis(sulfonamido) complexes in the intramolecular hydroamination of alkynes and allenes. Ackermann L; Bergman RG; Loy RN J Am Chem Soc; 2003 Oct; 125(39):11956-63. PubMed ID: 14505417 [TBL] [Abstract][Full Text] [Related]
9. Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds. Madhu V; Ekambaram B; Shimon LJ; Diskin Y; Leitus G; Neumann R Dalton Trans; 2010 Aug; 39(31):7266-75. PubMed ID: 20582360 [TBL] [Abstract][Full Text] [Related]
10. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity. Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355 [TBL] [Abstract][Full Text] [Related]
11. Titanium, zinc and alkaline-earth metal complexes supported by bulky O,N,N,O-multidentate ligands: syntheses, characterisation and activity in cyclic ester polymerisation. Sarazin Y; Howard RH; Hughes DL; Humphrey SM; Bochmann M Dalton Trans; 2006 Jan; (2):340-50. PubMed ID: 16365648 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, structures and catalytic properties of iron(III) complexes with asymmetric N-capped tripodal NO3 ligands and a pentadentate N2O3 ligand. Tong LH; Wong YL; Pascu SI; Dilworth JR Dalton Trans; 2008 Sep; (35):4784-91. PubMed ID: 18728888 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, structure and magnetic behavior of five-coordinate bis(iminopyrrolyl) complexes of cobalt(II) containing PMe3 and THF ligands. Carabineiro SA; Bellabarba RM; Gomes PT; Pascu SI; Veiros LF; Freire C; Pereira LC; Henriques RT; Oliveira MC; Warren JE Inorg Chem; 2008 Oct; 47(19):8896-911. PubMed ID: 18712860 [TBL] [Abstract][Full Text] [Related]
14. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters. De La Cruz C; Sheppard N Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107 [TBL] [Abstract][Full Text] [Related]
15. Broadening the scope of group 4 hydroamination catalysis using a tethered ureate ligand. Leitch DC; Payne PR; Dunbar CR; Schafer LL J Am Chem Soc; 2009 Dec; 131(51):18246-7. PubMed ID: 19994887 [TBL] [Abstract][Full Text] [Related]
16. Heteroleptic alkyl and amide iminoanilide alkaline earth and divalent rare earth complexes for the catalysis of hydrophosphination and (cyclo)hydroamination reactions. Liu B; Roisnel T; Carpentier JF; Sarazin Y Chemistry; 2013 Sep; 19(40):13445-62. PubMed ID: 23955798 [TBL] [Abstract][Full Text] [Related]
17. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties. Velusamy M; Mayilmurugan R; Palaniandavar M Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes. Dubberley SR; Friedrich A; Willman DA; Mountford P; Radius U Chemistry; 2003 Aug; 9(15):3634-54. PubMed ID: 12898691 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic elucidation of intramolecular aminoalkene hydroamination catalyzed by a tethered bis(ureate) complex: evidence for proton-assisted C-N bond formation at zirconium. Leitch DC; Platel RH; Schafer LL J Am Chem Soc; 2011 Oct; 133(39):15453-63. PubMed ID: 21851117 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and catalytic activity of group 5 metal amides with chiral biaryldiamine-based ligands. Zhang F; Song H; Zi G Dalton Trans; 2011 Feb; 40(7):1547-66. PubMed ID: 21218246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]