These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 21725572)
1. Validation of electronic structure methods for isomerization reactions of large organic molecules. Luo S; Zhao Y; Truhlar DG Phys Chem Chem Phys; 2011 Aug; 13(30):13683-9. PubMed ID: 21725572 [TBL] [Abstract][Full Text] [Related]
2. The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights. Zheng J; Zhao Y; Truhlar DG J Chem Theory Comput; 2009 Apr; 5(4):808-21. PubMed ID: 26609587 [TBL] [Abstract][Full Text] [Related]
3. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods. Zhao Y; Ng HT; Peverati R; Truhlar DG J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123 [TBL] [Abstract][Full Text] [Related]
4. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
5. Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. Minenkov Y; Wang H; Wang Z; Sarathy SM; Cavallo L J Chem Theory Comput; 2017 Aug; 13(8):3537-3560. PubMed ID: 28636351 [TBL] [Abstract][Full Text] [Related]
6. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. Huenerbein R; Schirmer B; Moellmann J; Grimme S Phys Chem Chem Phys; 2010 Jul; 12(26):6940-8. PubMed ID: 20461239 [TBL] [Abstract][Full Text] [Related]
7. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Goerigk L; Grimme S Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the accuracy of density functionals for prediction of relative energies and geometries of low-lying isomers of water hexamers. Dahlke EE; Olson RM; Leverentz HR; Truhlar DG J Phys Chem A; 2008 May; 112(17):3976-84. PubMed ID: 18393474 [TBL] [Abstract][Full Text] [Related]
9. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. Pitonák M; Riley KE; Neogrády P; Hobza P Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Zhao Y; Truhlar DG J Chem Theory Comput; 2008 Nov; 4(11):1849-68. PubMed ID: 26620329 [TBL] [Abstract][Full Text] [Related]
11. How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States? Xu X; Alecu IM; Truhlar DG J Chem Theory Comput; 2011 Jun; 7(6):1667-76. PubMed ID: 26596431 [TBL] [Abstract][Full Text] [Related]
12. Zn Coordination Chemistry: Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Amin EA; Truhlar DG J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981 [TBL] [Abstract][Full Text] [Related]
13. Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Yang K; Peverati R; Truhlar DG; Valero R J Chem Phys; 2011 Jul; 135(4):044118. PubMed ID: 21806101 [TBL] [Abstract][Full Text] [Related]
14. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves. Ess DH; Cook TC J Phys Chem A; 2012 May; 116(20):4922-9. PubMed ID: 22578025 [TBL] [Abstract][Full Text] [Related]
15. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies. Jacquemin D; Perpète EA; Ciofini I; Adamo C; Valero R; Zhao Y; Truhlar DG J Chem Theory Comput; 2010 Jul; 6(7):2071-85. PubMed ID: 26615935 [TBL] [Abstract][Full Text] [Related]
16. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
17. Assessment of density functionals for pi systems: Energy differences between cumulenes and poly-ynes; proton affinities, bond length alternation, and torsional potentials of conjugated polyenes; and proton affinities of conjugated Shiff bases. Zhao Y; Truhlar DG J Phys Chem A; 2006 Sep; 110(35):10478-86. PubMed ID: 16942053 [TBL] [Abstract][Full Text] [Related]
18. Tests of Exchange-Correlation Functional Approximations Against Reliable Experimental Data for Average Bond Energies of 3d Transition Metal Compounds. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2013 Sep; 9(9):3965-77. PubMed ID: 26592392 [TBL] [Abstract][Full Text] [Related]
19. The MC-DFT approach including the SCS-MP2 energies to the new Minnesota-type functionals. Liu PC; Hu WP J Comput Chem; 2014 Aug; 35(21):1560-7. PubMed ID: 24923999 [TBL] [Abstract][Full Text] [Related]
20. Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene. Leverentz HR; Truhlar DG J Phys Chem A; 2008 Jul; 112(26):6009-16. PubMed ID: 18540587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]