These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21725887)

  • 1. Recognition of lipid-protein rafts in vacuolar membrane.
    Ozolina NV; Nesterkina IS; Nurminsky VN; Stepanov AV; Kolesnikova EV; Gurina VV; Salyaev RK
    Dokl Biochem Biophys; 2011; 438():120-2. PubMed ID: 21725887
    [No Abstract]   [Full Text] [Related]  

  • 2. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells.
    Toulmay A; Prinz WA
    J Cell Biol; 2013 Jul; 202(1):35-44. PubMed ID: 23836928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipids and lipid domains of the yeast vacuole.
    Tsuji T; Fujimoto T
    Biochem Soc Trans; 2018 Oct; 46(5):1047-1054. PubMed ID: 30242116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes.
    Chamberlain LH; Gould GW
    J Biol Chem; 2002 Dec; 277(51):49750-4. PubMed ID: 12376543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins.
    Yoshida K; Ohnishi M; Fukao Y; Okazaki Y; Fujiwara M; Song C; Nakanishi Y; Saito K; Shimmen T; Suzaki T; Hayashi F; Fukaki H; Maeshima M; Mimura T
    Plant Cell Physiol; 2013 Oct; 54(10):1571-84. PubMed ID: 23903016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes.
    Vetrivel KS; Cheng H; Lin W; Sakurai T; Li T; Nukina N; Wong PC; Xu H; Thinakaran G
    J Biol Chem; 2004 Oct; 279(43):44945-54. PubMed ID: 15322084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid rafts, microdomain heterogeneity and inter-organelle contacts: impacts on membrane preparation for proteomic studies.
    Minogue S; Waugh MG
    Biol Cell; 2012 Oct; 104(10):618-27. PubMed ID: 22694059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The state of lipid rafts: from model membranes to cells.
    Edidin M
    Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in physical properties of vacuolar membrane during transformation of protein bodies into vacuoles in germinating pumpkin seeds.
    Strzałka K; Hara-Nishimura I; Nishimura M
    Biochim Biophys Acta; 1995 Nov; 1239(2):103-10. PubMed ID: 7488615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.
    Lorent JH; Levental I
    Chem Phys Lipids; 2015 Nov; 192():23-32. PubMed ID: 26241883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue.
    Kokubo H; Helms JB; Ohno-Iwashita Y; Shimada Y; Horikoshi Y; Yamaguchi H
    Brain Res; 2003 Mar; 965(1-2):83-90. PubMed ID: 12591123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds.
    Schmidt UG; Endler A; Schelbert S; Brunner A; Schnell M; Neuhaus HE; Marty-Mazars D; Marty F; Baginsky S; Martinoia E
    Plant Physiol; 2007 Sep; 145(1):216-29. PubMed ID: 17660356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of fatty acid composition of lipids in higher plant vacuolar membranes.
    Makarenko SP; Konenkina TA; Salyaev RK
    Membr Cell Biol; 2000; 13(5):687-95. PubMed ID: 10987391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed formation of lipid membrane microdomains as high affinity sites for His-tagged proteins.
    Hayden CC; Hwang JS; Abate EA; Kent MS; Sasaki DY
    J Am Chem Soc; 2009 Jul; 131(25):8728-9. PubMed ID: 19505102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differential protein and lipid compositions of noncaveolar lipid microdomains and caveolae.
    Yao Y; Hong S; Zhou H; Yuan T; Zeng R; Liao K
    Cell Res; 2009 Apr; 19(4):497-506. PubMed ID: 19255590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domains and rafts in lipid membranes.
    Binder WH; Barragan V; Menger FM
    Angew Chem Int Ed Engl; 2003; 42(47):5802-27. PubMed ID: 14673910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microemulsions, modulated phases and macroscopic phase separation: a unified picture of rafts.
    Giang H; Shlomovitz R; Schick M
    Essays Biochem; 2015; 57():21-32. PubMed ID: 25658341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support.
    Siddiqui RA; Harvey KA; Zaloga GP; Stillwell W
    Nutr Clin Pract; 2007 Feb; 22(1):74-88. PubMed ID: 17242459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid microdomains--plant membranes get organized.
    Martin SW; Glover BJ; Davies JM
    Trends Plant Sci; 2005 Jun; 10(6):263-5. PubMed ID: 15949758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.