These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21726039)
1. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat. Hamada MS; Yin Y; Chen H; Ma Z Pest Manag Sci; 2011 Nov; 67(11):1411-9. PubMed ID: 21726039 [TBL] [Abstract][Full Text] [Related]
2. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Chen J; Li GH; Du ZY; Quan W; Zhang HY; Che MZ; Wang Z; Zhang ZJ Theor Appl Genet; 2013 Nov; 126(11):2865-78. PubMed ID: 23989648 [TBL] [Abstract][Full Text] [Related]
3. The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease. Wei X; Shen F; Hong Y; Rong W; Du L; Liu X; Xu H; Ma L; Zhang Z Mol Plant Pathol; 2016 Oct; 17(8):1252-64. PubMed ID: 26720854 [TBL] [Abstract][Full Text] [Related]
4. Use of Lentinan To Control Sharp Eyespot of Wheat, and the Mechanism Involved. Zhang Z; Wang H; Wang K; Jiang L; Wang D J Agric Food Chem; 2017 Dec; 65(50):10891-10898. PubMed ID: 29191011 [TBL] [Abstract][Full Text] [Related]
5. Whole-Genome Metalloproteases in the Wheat Sharp Eyespot Pathogen Guo F; Pan L; Liu H; Lv L; Chen X; Liu Y; Li H; Ye W; Zhang Z Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142601 [No Abstract] [Full Text] [Related]
6. The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Zhu X; Qi L; Liu X; Cai S; Xu H; Huang R; Li J; Wei X; Zhang Z Plant Physiol; 2014 Mar; 164(3):1499-514. PubMed ID: 24424323 [TBL] [Abstract][Full Text] [Related]
7. Extreme Diversity of Mycoviruses Present in Single Strains of Rhizoctonia cerealis, the Pathogen of Wheat Sharp Eyespot. Li W; Sun H; Cao S; Zhang A; Zhang H; Shu Y; Chen H Microbiol Spectr; 2023 Aug; 11(4):e0052223. PubMed ID: 37436153 [TBL] [Abstract][Full Text] [Related]
8. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu X; Yang K; Wei X; Zhang Q; Rong W; Du L; Ye X; Qi L; Zhang Z J Exp Bot; 2015 Nov; 66(21):6591-603. PubMed ID: 26220083 [TBL] [Abstract][Full Text] [Related]
9. The Pathogen-Induced MATE Gene Su Q; Rong W; Zhang Z Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328796 [TBL] [Abstract][Full Text] [Related]
10. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. Zhu X; Lu C; Du L; Ye X; Liu X; Coules A; Zhang Z Plant Biotechnol J; 2017 Jun; 15(6):674-687. PubMed ID: 27862842 [TBL] [Abstract][Full Text] [Related]
11. Genome-Wide Identification of M35 Family Metalloproteases in Pan L; Wen S; Yu J; Lu L; Zhu X; Zhang Z Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340265 [No Abstract] [Full Text] [Related]
12. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Shan T; Rong W; Xu H; Du L; Liu X; Zhang Z Sci Rep; 2016 Jul; 6():28777. PubMed ID: 27364458 [TBL] [Abstract][Full Text] [Related]
13. Genetic Structure of Populations of the Wheat Sharp Eyespot Pathogen Rhizoctonia cerealis Anastomosis Group D Subgroup I in China. Li W; Guo Y; Zhang A; Chen H Phytopathology; 2017 Feb; 107(2):224-230. PubMed ID: 27726498 [TBL] [Abstract][Full Text] [Related]
14. The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. Xu YB; Chen M; Zhang Y; Wang M; Wang Y; Huang QB; Wang X; Wang G FEMS Microbiol Lett; 2014 May; 354(2):142-52. PubMed ID: 24750250 [TBL] [Abstract][Full Text] [Related]
15. Use of resistant Rhizoctonia cerealis strains to control wheat sharp eyespot using organically developed pig manure fertilizer. Xu Y; Li X; Cong C; Gong G; Xu Y; Che J; Hou F; Chen H; Wang L Sci Total Environ; 2020 Jul; 726():138568. PubMed ID: 32305767 [TBL] [Abstract][Full Text] [Related]
16. The heterogeneity of the rDNA-ITS sequence and its phylogeny in Rhizoctonia cerealis, the cause of sharp eyespot in wheat. Li W; Sun H; Deng Y; Zhang A; Chen H Curr Genet; 2014 Feb; 60(1):1-9. PubMed ID: 23839120 [TBL] [Abstract][Full Text] [Related]
17. Identification of Long Intergenic Noncoding RNAs in Yi K; Yan W; Li X; Yang S; Li J; Yin Y; Yuan F; Wang H; Kang Z; Han D; Zeng Q Microbiol Spectr; 2023 Jun; 11(3):e0344922. PubMed ID: 37036374 [TBL] [Abstract][Full Text] [Related]
18. A wheat caffeic acid 3-O-methyltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Wang M; Zhu X; Wang K; Lu C; Luo M; Shan T; Zhang Z Sci Rep; 2018 Apr; 8(1):6543. PubMed ID: 29695751 [TBL] [Abstract][Full Text] [Related]
19. The Wall-Associated Receptor-Like Kinase TaWAK7D Is Required for Defense Responses to Qi H; Zhu X; Guo F; Lv L; Zhang Z Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073183 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. Chen L; Zhang Z; Liang H; Liu H; Du L; Xu H; Xin Z J Exp Bot; 2008; 59(15):4195-204. PubMed ID: 18953072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]