These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 21726048)
1. Investigating pathogen biology at the level of the proteome. Cash P Proteomics; 2011 Aug; 11(15):3190-202. PubMed ID: 21726048 [TBL] [Abstract][Full Text] [Related]
2. Proteome analysis of host-pathogen interactions: Investigation of pathogen responses to the host cell environment. Schmidt F; Völker U Proteomics; 2011 Aug; 11(15):3203-11. PubMed ID: 21710565 [TBL] [Abstract][Full Text] [Related]
3. Genomic-scale analysis of bacterial gene and protein expression in the host. Boyce JD; Cullen PA; Adler B Emerg Infect Dis; 2004 Aug; 10(8):1357-62. PubMed ID: 15496234 [TBL] [Abstract][Full Text] [Related]
5. Proteomics in medical microbiology. Cash P Electrophoresis; 2000 Apr; 21(6):1187-201. PubMed ID: 10786891 [TBL] [Abstract][Full Text] [Related]
6. The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis. Boehmer JL; DeGrasse JA; McFarland MA; Tall EA; Shefcheck KJ; Ward JL; Bannerman DD Vet Immunol Immunopathol; 2010 Dec; 138(4):252-66. PubMed ID: 21067814 [TBL] [Abstract][Full Text] [Related]
7. A proteomic view of the host-pathogen interaction: The host perspective. Hartlova A; Krocova Z; Cerveny L; Stulik J Proteomics; 2011 Aug; 11(15):3212-20. PubMed ID: 21726044 [TBL] [Abstract][Full Text] [Related]
8. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
9. Chemical tools for dissecting bacterial physiology and virulence. Stanley SA; Hung DT Biochemistry; 2009 Sep; 48(37):8776-86. PubMed ID: 19653697 [TBL] [Abstract][Full Text] [Related]
10. Proteomics of bacterial pathogens. Cash P Expert Opin Drug Discov; 2008 May; 3(5):461-73. PubMed ID: 23484920 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions. Yang Y; Hu M; Yu K; Zeng X; Liu X Protein Cell; 2015 Apr; 6(4):265-74. PubMed ID: 25722051 [TBL] [Abstract][Full Text] [Related]
12. Probing bacterial pathogenesis with genetics, genomics, and chemical biology: past, present, and future approaches. Gomez JE; Clatworthy A; Hung DT Crit Rev Biochem Mol Biol; 2011 Feb; 46(1):41-66. PubMed ID: 21250782 [TBL] [Abstract][Full Text] [Related]
13. Proteomic and gene profiling approaches to study host responses to bacterial infection. Walduck A; Rudel T; Meyer TF Curr Opin Microbiol; 2004 Feb; 7(1):33-8. PubMed ID: 15036137 [TBL] [Abstract][Full Text] [Related]
15. Developing antibacterial vaccines in genomics and proteomics era. Kaushik DK; Sehgal D Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199 [TBL] [Abstract][Full Text] [Related]
16. Genetic tools to study gene expression during bacterial pathogen infection. Hsiao A; Zhu J Adv Appl Microbiol; 2009; 67():297-314. PubMed ID: 19245943 [TBL] [Abstract][Full Text] [Related]
17. Proteomics in the study of the molecular taxonomy and epidemiology of bacterial pathogens. Cash P Electrophoresis; 2009 Jun; 30 Suppl 1():S133-41. PubMed ID: 19517493 [TBL] [Abstract][Full Text] [Related]
18. Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Guttman JA; Finlay BB Trends Microbiol; 2008 Nov; 16(11):535-42. PubMed ID: 18819802 [TBL] [Abstract][Full Text] [Related]