These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 21726415)
41. Structure determination of tetrahydroquinazoline antifolates in complex with human and Pneumocystis carinii dihydrofolate reductase: correlations between enzyme selectivity and stereochemistry. Cody V; Luft JR; Pangborn W; Gangjee A; Queener SF Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):646-55. PubMed ID: 15039552 [TBL] [Abstract][Full Text] [Related]
42. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry. Cammarata MB; Thyer R; Rosenberg J; Ellington A; Brodbelt JS J Am Chem Soc; 2015 Jul; 137(28):9128-35. PubMed ID: 26125523 [TBL] [Abstract][Full Text] [Related]
43. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Krucinska J; Lombardo MN; Erlandsen H; Estrada A; Si D; Viswanathan K; Wright DL Commun Biol; 2022 May; 5(1):459. PubMed ID: 35562546 [TBL] [Abstract][Full Text] [Related]
44. Targeted mutations of Bacillus anthracis dihydrofolate reductase condense complex structure−activity relationships. Beierlein JM; Karri NG; Anderson AC J Med Chem; 2010 Oct; 53(20):7327-36. PubMed ID: 20882962 [TBL] [Abstract][Full Text] [Related]
45. Structure-based approach to the development of potent and selective inhibitors of dihydrofolate reductase from cryptosporidium. Bolstad DB; Bolstad ES; Frey KM; Wright DL; Anderson AC J Med Chem; 2008 Nov; 51(21):6839-52. PubMed ID: 18834108 [TBL] [Abstract][Full Text] [Related]
47. The solution structure of Bacillus anthracis dihydrofolate reductase yields insight into the analysis of structure-activity relationships for novel inhibitors. Beierlein JM; Deshmukh L; Frey KM; Vinogradova O; Anderson AC Biochemistry; 2009 May; 48(19):4100-8. PubMed ID: 19323450 [TBL] [Abstract][Full Text] [Related]
48. In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase. Fogel GB; Cheung M; Pittman E; Hecht D J Mol Graph Model; 2008 Apr; 26(7):1145-52. PubMed ID: 18037315 [TBL] [Abstract][Full Text] [Related]
49. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+. Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348 [TBL] [Abstract][Full Text] [Related]
50. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Hong W; Wang Y; Chang Z; Yang Y; Pu J; Sun T; Kaur S; Sacchettini JC; Jung H; Lin Wong W; Fah Yap L; Fong Ngeow Y; Paterson IC; Wang H Sci Rep; 2015 Oct; 5():15328. PubMed ID: 26471125 [TBL] [Abstract][Full Text] [Related]
51. Development of novel indolin-2-one derivative incorporating thiazole moiety as DHFR and quorum sensing inhibitors: Synthesis, antimicrobial, and antibiofilm activities with molecular modelling study. Alzahrani AY; Ammar YA; Abu-Elghait M; Salem MA; Assiri MA; Ali TE; Ragab A Bioorg Chem; 2022 Feb; 119():105571. PubMed ID: 34959177 [TBL] [Abstract][Full Text] [Related]
52. Design, synthesis, and X-ray crystal structure of a potent dual inhibitor of thymidylate synthase and dihydrofolate reductase as an antitumor agent. Gangjee A; Yu J; McGuire JJ; Cody V; Galitsky N; Kisliuk RL; Queener SF J Med Chem; 2000 Oct; 43(21):3837-51. PubMed ID: 11052789 [TBL] [Abstract][Full Text] [Related]
53. Inhibition of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim. Rosowsky A; Forsch RA; Queener SF J Med Chem; 2002 Jan; 45(1):233-41. PubMed ID: 11754594 [TBL] [Abstract][Full Text] [Related]
55. Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes. Sharma VK; Abbat S; Bharatam PV Mol Inform; 2017 Nov; 36(11):. PubMed ID: 28605138 [TBL] [Abstract][Full Text] [Related]
56. Mutational analysis confirms the presence of distal inhibitor-selectivity determining residues in B. stearothermophilus dihydrofolate reductase. Eck T; Patel S; Candela T; Leon H K; Little M; Reis NE; Liyanagunawardana U; Gubler U; Janson CA; Catalano J; Goodey NM Arch Biochem Biophys; 2020 Oct; 692():108545. PubMed ID: 32810476 [TBL] [Abstract][Full Text] [Related]
57. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999 [TBL] [Abstract][Full Text] [Related]
58. Structural analysis of Pneumocystis carinii and human DHFR complexes with NADPH and a series of five potent 6-[5'-(ω-carboxyalkoxy)benzyl]pyrido[2,3-d]pyrimidine derivatives. Cody V; Pace J Acta Crystallogr D Biol Crystallogr; 2011 Jan; 67(Pt 1):1-7. PubMed ID: 21206056 [TBL] [Abstract][Full Text] [Related]
59. Further studies on 2,4-diamino-5-(2',5'-disubstituted benzyl)pyrimidines as potent and selective inhibitors of dihydrofolate reductases from three major opportunistic pathogens of AIDS. Rosowsky A; Forsch RA; Queener SF J Med Chem; 2003 Apr; 46(9):1726-36. PubMed ID: 12699390 [TBL] [Abstract][Full Text] [Related]
60. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities. Bhosle A; Chandra N FEBS J; 2016 Mar; 283(6):1139-67. PubMed ID: 26797763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]