BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21726447)

  • 1. Detection of lineage-specific evolutionary changes among primate species.
    Pertea M; Pertea GM; Salzberg SL
    BMC Bioinformatics; 2011 Jul; 12():274. PubMed ID: 21726447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genome-wide screen for noncoding elements important in primate evolution.
    Bush EC; Lahn BT
    BMC Evol Biol; 2008 Jan; 8():17. PubMed ID: 18215302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary analysis of the mitochondrial genome evolutionary pattern in primates.
    Zhao L; Zhang X; Tao X; Wang W; Li M
    Dongwuxue Yanjiu; 2012 Aug; 33(E3-4):E47-56. PubMed ID: 22855454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of higher-primate phylogeny from transversion differences in nuclear and mitochondrial DNA by Lake's methods of evolutionary parsimony and operator metrics.
    Holmquist R; Miyamoto MM; Goodman M
    Mol Biol Evol; 1988 May; 5(3):217-36. PubMed ID: 3386527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting positive selection within genomes: the problem of biased gene conversion.
    Ratnakumar A; Mousset S; Glémin S; Berglund J; Galtier N; Duret L; Webster MT
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1552):2571-80. PubMed ID: 20643747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes.
    Cai JJ; Petrov DA
    Genome Biol Evol; 2010 Jul; 2():393-409. PubMed ID: 20624743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity.
    Arbour JH; Santana SE
    Evolution; 2017 Jun; 71(6):1600-1613. PubMed ID: 28346661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates.
    Montgomery SH; Capellini I; Venditti C; Barton RA; Mundy NI
    Mol Biol Evol; 2011 Jan; 28(1):625-38. PubMed ID: 20961963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.
    Niu AL; Wang YQ; Zhang H; Liao CH; Wang JK; Zhang R; Che J; Su B
    BMC Evol Biol; 2011 Oct; 11():298. PubMed ID: 21988730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes.
    Pupko T; Galtier N
    Proc Biol Sci; 2002 Jul; 269(1498):1313-6. PubMed ID: 12079652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates.
    Boddy AM; Harrison PW; Montgomery SH; Caravas JA; Raghanti MA; Phillips KA; Mundy NI; Wildman DE
    Genome Biol Evol; 2017 Mar; 9(3):700-713. PubMed ID: 28391320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans.
    Daub JT; Moretti S; Davydov II; Excoffier L; Robinson-Rechavi M
    Mol Biol Evol; 2017 Jun; 34(6):1391-1402. PubMed ID: 28333345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of the primate developmental genes MSX1 and PAX9.
    Perry GH; Verrelli BC; Stone AC
    Mol Biol Evol; 2006 Mar; 23(3):644-54. PubMed ID: 16326750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of nonneutral substitution rates on mammalian phylogenies.
    Pollard KS; Hubisz MJ; Rosenbloom KR; Siepel A
    Genome Res; 2010 Jan; 20(1):110-21. PubMed ID: 19858363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lineage-specific accelerated sequences underlying primate evolution.
    Bi X; Zhou L; Zhang JJ; Feng S; Hu M; Cooper DN; Lin J; Li J; Wu DD; Zhang G
    Sci Adv; 2023 Jun; 9(22):eadc9507. PubMed ID: 37262186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structurally divergent and recurrently mutated regions of primate genomes.
    Mao Y; Harvey WT; Porubsky D; Munson KM; Hoekzema K; Lewis AP; Audano PA; Rozanski A; Yang X; Zhang S; Yoo D; Gordon DS; Fair T; Wei X; Logsdon GA; Haukness M; Dishuck PC; Jeong H; Del Rosario R; Bauer VL; Fattor WT; Wilkerson GK; Mao Y; Shi Y; Sun Q; Lu Q; Paten B; Bakken TE; Pollen AA; Feng G; Sawyer SL; Warren WC; Carbone L; Eichler EE
    Cell; 2024 Mar; 187(6):1547-1562.e13. PubMed ID: 38428424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primate phylogenomics: developing numerous nuclear non-coding, non-repetitive markers for ecological and phylogenetic applications and analysis of evolutionary rate variation.
    Peng Z; Elango N; Wildman DE; Yi SV
    BMC Genomics; 2009 May; 10():247. PubMed ID: 19470178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage.
    Pace JK; Feschotte C
    Genome Res; 2007 Apr; 17(4):422-32. PubMed ID: 17339369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The broader evolutionary lessons to be learned from a comparative and phylogenetic analysis of primate muscle morphology.
    Diogo R; Wood B
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):988-1001. PubMed ID: 23530476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid.
    Ying M; Zhan Z; Wang W; Chen D
    Gene; 2009 Nov; 447(2):72-85. PubMed ID: 19664694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.