BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21726551)

  • 1. Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography.
    Wang L; Považay B; Chen YP; Hofer B; Drexler W; Guggenheim JA
    Exp Eye Res; 2011 Oct; 93(4):482-90. PubMed ID: 21726551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement.
    Zhou X; Xie J; Shen M; Wang J; Jiang L; Qu J; Lu F
    Vision Res; 2008 Apr; 48(9):1137-43. PubMed ID: 18346775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers.
    Grulkowski I; Liu JJ; Zhang JY; Potsaid B; Jayaraman V; Cable AE; Duker JS; Fujimoto JG
    Ophthalmology; 2013 Nov; 120(11):2184-90. PubMed ID: 23755873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repeatability and reproducibility of anterior ocular biometric measurements with 2-dimensional and 3-dimensional optical coherence tomography.
    Fukuda S; Kawana K; Yasuno Y; Oshika T
    J Cataract Refract Surg; 2010 Nov; 36(11):1867-73. PubMed ID: 21029894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biometry in the mouse eye with low coherence interferometry.
    Schmucker C; Schaeffel F
    Vision Res; 2004; 44(21):2445-56. PubMed ID: 15358080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anterior ocular biometry using 3-dimensional optical coherence tomography.
    Fukuda S; Kawana K; Yasuno Y; Oshika T
    Ophthalmology; 2009 May; 116(5):882-9. PubMed ID: 19410946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated biometry of in situ intraocular lenses using long scan depth spectral-domain optical coherence tomography.
    Chen Q; Leng L; Zhu D; Wang Y; Shao Y; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jan; 40(1):37-45. PubMed ID: 24335453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster.
    Huang J; Savini G; Hoffer KJ; Chen H; Lu W; Hu Q; Bao F; Wang Q
    Br J Ophthalmol; 2017 Apr; 101(4):493-498. PubMed ID: 27503393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry.
    Maczynska E; Rzeszewska-Zamiara J; Jimenez Villar A; Wojtkowski M; Kaluzny BJ; Grulkowski I
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1979-1986. PubMed ID: 31050724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior chamber width measurement by high-speed optical coherence tomography.
    Goldsmith JA; Li Y; Chalita MR; Westphal V; Patil CA; Rollins AM; Izatt JA; Huang D
    Ophthalmology; 2005 Feb; 112(2):238-44. PubMed ID: 15691557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching the LenStar optical biometer to A-Scan ultrasonography for use in small animal eyes with application to tree shrews.
    El Hamdaoui M; Gann DW; Norton TT; Grytz R
    Exp Eye Res; 2019 Mar; 180():250-259. PubMed ID: 30593786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Submicrometer precision biometry of the anterior segment of the human eye.
    Drexler W; Baumgartner A; Findl O; Hitzenberger CK; Sattmann H; Fercher AF
    Invest Ophthalmol Vis Sci; 1997 Jun; 38(7):1304-13. PubMed ID: 9191593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole eye axial biometry during accommodation using ultra-long scan depth optical coherence tomography.
    Zhong J; Tao A; Xu Z; Jiang H; Shao Y; Zhang H; Liu C; Wang J
    Am J Ophthalmol; 2014 May; 157(5):1064-69. PubMed ID: 24487051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biometric investigation of ocular components in amblyopia.
    Cass K; Tromans C
    Ophthalmic Physiol Opt; 2008 Sep; 28(5):429-40. PubMed ID: 18761480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.
    Zhu D; Shao Y; Leng L; Xu Z; Wang J; Lu F; Shen M
    Eye Contact Lens; 2014 Jul; 40(4):232-8. PubMed ID: 24901975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the repeatability of a swept-source ocular biometer for measuring ocular biometric parameters.
    Ferrer-Blasco T; Domínguez-Vicent A; Esteve-Taboada JJ; Aloy MA; Adsuara JE; Montés-Micó R
    Graefes Arch Clin Exp Ophthalmol; 2017 Feb; 255(2):343-349. PubMed ID: 27900479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of the refractive status and ocular growth in C57BL/6 mice.
    Zhou X; Shen M; Xie J; Wang J; Jiang L; Pan M; Qu J; Lu F
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5208-14. PubMed ID: 18689702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal development of refractive state and ocular dimensions in guinea pigs.
    Zhou X; Qu J; Xie R; Wang R; Jiang L; Zhao H; Wen J; Lu F
    Vision Res; 2006 Sep; 46(18):2815-23. PubMed ID: 16723148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography.
    Grieve K; Paques M; Dubois A; Sahel J; Boccara C; Le Gargasson JF
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4126-31. PubMed ID: 15505065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Lenstar LS 900 non-contact biometer.
    Cruysberg LP; Doors M; Verbakel F; Berendschot TT; De Brabander J; Nuijts RM
    Br J Ophthalmol; 2010 Jan; 94(1):106-10. PubMed ID: 19692383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.