These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 21726566)
1. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. Wada T; Shimono K; Kikukawa T; Hato M; Shinya N; Kim SY; Kimura-Someya T; Shirouzu M; Tamogami J; Miyauchi S; Jung KH; Kamo N; Yokoyama S J Mol Biol; 2011 Sep; 411(5):986-98. PubMed ID: 21726566 [TBL] [Abstract][Full Text] [Related]
2. Interhelical interactions between D92 and C218 in the cytoplasmic domain regulate proton uptake upon N-decay in the proton transport of Acetabularia rhodopsin II. Tamogami J; Kikukawa T; Ohkawa K; Ohsawa N; Nara T; Demura M; Miyauchi S; Kimura-Someya T; Shirouzu M; Yokoyama S; Shimono K; Kamo N J Photochem Photobiol B; 2018 Jun; 183():35-45. PubMed ID: 29684719 [TBL] [Abstract][Full Text] [Related]
3. Photochemistry of Acetabularia rhodopsin II from a marine plant, Acetabularia acetabulum. Kikukawa T; Shimono K; Tamogami J; Miyauchi S; Kim SY; Kimura-Someya T; Shirouzu M; Jung KH; Yokoyama S; Kamo N Biochemistry; 2011 Oct; 50(41):8888-98. PubMed ID: 21905737 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for the slow photocycle and late proton release in Acetabularia rhodopsin I from the marine plant Acetabularia acetabulum. Furuse M; Tamogami J; Hosaka T; Kikukawa T; Shinya N; Hato M; Ohsawa N; Kim SY; Jung KH; Demura M; Miyauchi S; Kamo N; Shimono K; Kimura-Someya T; Yokoyama S; Shirouzu M Acta Crystallogr D Biol Crystallogr; 2015 Nov; 71(Pt 11):2203-16. PubMed ID: 26527138 [TBL] [Abstract][Full Text] [Related]
5. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
6. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
7. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
8. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study. Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486 [TBL] [Abstract][Full Text] [Related]
9. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant. Shibata M; Ihara K; Kandori H Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215 [TBL] [Abstract][Full Text] [Related]
12. Engineering an inward proton transport from a bacterial sensor rhodopsin. Kawanabe A; Furutani Y; Jung KH; Kandori H J Am Chem Soc; 2009 Nov; 131(45):16439-44. PubMed ID: 19848403 [TBL] [Abstract][Full Text] [Related]
13. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053 [TBL] [Abstract][Full Text] [Related]
14. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein. Kandt C; Gerwert K; Schlitter J Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339 [TBL] [Abstract][Full Text] [Related]
15. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
16. Proton transfer reactions in the F86D and F86E mutants of pharaonis phoborhodopsin (sensory rhodopsin II). Iwamoto M; Furutani Y; Kamo N; Kandori H Biochemistry; 2003 Mar; 42(10):2790-6. PubMed ID: 12627944 [TBL] [Abstract][Full Text] [Related]
17. Acetabularia rhodopsin I is a light-stimulated proton pump. Lee SS; Choi AR; Kim SY; Kang HW; Jung KH; Lee JH J Nanosci Nanotechnol; 2011 May; 11(5):4596-600. PubMed ID: 21780504 [TBL] [Abstract][Full Text] [Related]
18. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Waschuk SA; Bezerra AG; Shi L; Brown LS Proc Natl Acad Sci U S A; 2005 May; 102(19):6879-83. PubMed ID: 15860584 [TBL] [Abstract][Full Text] [Related]
19. FTIR study of the L intermediate of Anabaena sensory rhodopsin: structural changes in the cytoplasmic region. Kawanabe A; Furutani Y; Yoon SR; Jung KH; Kandori H Biochemistry; 2008 Sep; 47(38):10033-40. PubMed ID: 18759456 [TBL] [Abstract][Full Text] [Related]
20. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y; Shibata M; Kandori H Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]