These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 21726654)
1. Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene. Al-Sheboul S; Saffarini D Anaerobe; 2011 Dec; 17(6):501-5. PubMed ID: 21726654 [TBL] [Abstract][Full Text] [Related]
2. Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803. Goto T; Aoki R; Minamizaki K; Fujita Y Plant Cell Physiol; 2010 Apr; 51(4):650-63. PubMed ID: 20194361 [TBL] [Abstract][Full Text] [Related]
3. The Alcaligenes eutrophus hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase, is required for heme biosynthesis during anaerobic growth. Lieb C; Siddiqui RA; Hippler B; Jahn D; Friedrich B Arch Microbiol; 1998 Jan; 169(1):52-60. PubMed ID: 9396835 [TBL] [Abstract][Full Text] [Related]
4. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor. Jones ME; Fennessey CM; DiChristina TJ; Taillefert M Environ Microbiol; 2010 Apr; 12(4):938-50. PubMed ID: 20089045 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic regulation by an atypical Arc system in Shewanella oneidensis. Gralnick JA; Brown CT; Newman DK Mol Microbiol; 2005 Jun; 56(5):1347-57. PubMed ID: 15882425 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Bouhenni R; Gehrke A; Saffarini D Appl Environ Microbiol; 2005 Aug; 71(8):4935-7. PubMed ID: 16085900 [TBL] [Abstract][Full Text] [Related]
7. Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu⁺-ATPase mutant copA⁻ of Rubrivivax gelatinosus. Azzouzi A; Steunou AS; Durand A; Khalfaoui-Hassani B; Bourbon ML; Astier C; Bollivar DW; Ouchane S Mol Microbiol; 2013 Apr; 88(2):339-51. PubMed ID: 23448658 [TBL] [Abstract][Full Text] [Related]
8. Outer membrane-associated serine protease involved in adhesion of Shewanella oneidensis to Fe(III) oxides. Burns JL; Ginn BR; Bates DJ; Dublin SN; Taylor JV; Apkarian RP; Amaro-Garcia S; Neal AL; Dichristina TJ Environ Sci Technol; 2010 Jan; 44(1):68-73. PubMed ID: 20039735 [TBL] [Abstract][Full Text] [Related]
9. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. Troup B; Hungerer C; Jahn D J Bacteriol; 1995 Jun; 177(11):3326-31. PubMed ID: 7768836 [TBL] [Abstract][Full Text] [Related]
10. Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1. Maier TM; Myers JM; Myers CR J Basic Microbiol; 2003; 43(4):312-27. PubMed ID: 12872312 [TBL] [Abstract][Full Text] [Related]
11. Roles of d-Lactate Dehydrogenases in the Anaerobic Growth of Kasai T; Suzuki Y; Kouzuma A; Watanabe K Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30504209 [No Abstract] [Full Text] [Related]
12. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase. Xu K; Elliott T J Bacteriol; 1994 Jun; 176(11):3196-203. PubMed ID: 8195073 [TBL] [Abstract][Full Text] [Related]
13. The solution structure of a tetraheme cytochrome from Shewanella frigidimarina reveals a novel family structural motif. Paixão VB; Salgueiro CA; Brennan L; Reid GA; Chapman SK; Turner DL Biochemistry; 2008 Nov; 47(46):11973-80. PubMed ID: 18950243 [TBL] [Abstract][Full Text] [Related]
14. One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. Fischer HM; Velasco L; Delgado MJ; Bedmar EJ; Schären S; Zingg D; Göttfert M; Hennecke H J Bacteriol; 2001 Feb; 183(4):1300-11. PubMed ID: 11157943 [TBL] [Abstract][Full Text] [Related]
15. The outer membrane protein Omp35 affects the reduction of Fe(III), nitrate, and fumarate by Shewanella oneidensis MR-1. Maier TM; Myers CR BMC Microbiol; 2004 Jun; 4():23. PubMed ID: 15212692 [TBL] [Abstract][Full Text] [Related]
16. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. Hunt KA; Flynn JM; Naranjo B; Shikhare ID; Gralnick JA J Bacteriol; 2010 Jul; 192(13):3345-51. PubMed ID: 20400539 [TBL] [Abstract][Full Text] [Related]
17. Anomalies of the anaerobic tricarboxylic acid cycle in Shewanella oneidensis revealed by Tn-seq. Brutinel ED; Gralnick JA Mol Microbiol; 2012 Oct; 86(2):273-83. PubMed ID: 22925268 [TBL] [Abstract][Full Text] [Related]
18. Targeted protein degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 measured using biarsenical probe CrAsH-EDT(2). Xiong Y; Chen B; Shi L; Fredrickson JK; Bigelow DJ; Squier TC Biochemistry; 2011 Nov; 50(45):9738-51. PubMed ID: 21999518 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional control of Bacillus subtilis hemN and hemZ. Homuth G; Rompf A; Schumann W; Jahn D J Bacteriol; 1999 Oct; 181(19):5922-9. PubMed ID: 10498703 [TBL] [Abstract][Full Text] [Related]
20. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Covington ED; Gelbmann CB; Kotloski NJ; Gralnick JA Mol Microbiol; 2010 Oct; 78(2):519-32. PubMed ID: 20807196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]