These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21726709)

  • 61. Pulsed-laser mode-mismatched crossed-beam thermal lens spectrometry within a small capillary tube: effect of flow rate and beam offset on the photothermal signal.
    Chanlon S; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Jun; 58(8):1607-13. PubMed ID: 12166732
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhancement of the thermal lens signal induced by sample matrix absorption of the probe laser beam.
    Grishko VI; Tran CD; Duley WW
    Appl Opt; 2002 Sep; 41(27):5814-22. PubMed ID: 12269581
    [TBL] [Abstract][Full Text] [Related]  

  • 63. In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens.
    Li B; Martin S; Welsch E
    Appl Opt; 2000 Sep; 39(25):4690-7. PubMed ID: 18350060
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Angular dependence of the thermal-lens effect on LiSrAlF6 and LiSrGaF6 single crystals.
    Steimacher A; Sakai OA; Bento AC; Baesso ML; Medina AN; Lima SM; Catunda T
    Opt Lett; 2008 Aug; 33(15):1720-2. PubMed ID: 18670515
    [TBL] [Abstract][Full Text] [Related]  

  • 65. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.
    Marcano A; Alvarado S; Meng J; Caballero D; Moares EM; Edziah R
    Appl Spectrosc; 2014; 68(6):680-5. PubMed ID: 25014724
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurements.
    Georges J
    Talanta; 1999 Mar; 48(3):501-9. PubMed ID: 18967490
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Collinear photothermal deflection spectroscopy with light-scattering samples.
    Spear JD; Russo RE; Silva RJ
    Appl Opt; 1990 Oct; 29(28):4225-34. PubMed ID: 20577368
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Thermally induced laser pulsing to measure weak optical absorptions.
    Cremers DA; Keller RA
    Appl Opt; 1981 Nov; 20(22):3838-48. PubMed ID: 20372280
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Determination of the Dependence of Thermal Diffusivity with
    Carbajal-Valdéz R; Jiménez-Pérez JL; Gamboa-López G; Correa-Pacheco ZN; Hernández-Aguilar C; Pérez-González M; García-Vidal UO; Netzahual-Lopantzi A
    Int J Thermophys; 2020; 41(8):105. PubMed ID: 32501319
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Magnification in excess of 100-times of the microscopic photothermal lensing signal from solute molecules by two-color excitation with continuous-wave lasers.
    Harata A; Fukushima K; Hatano Y
    Anal Sci; 2002 Dec; 18(12):1367-73. PubMed ID: 12502091
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optical Fourier transform: what is the optimal setup?
    Joyeux D; Lowenthal S
    Appl Opt; 1982 Dec; 21(23):4368-72. PubMed ID: 20401072
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Retroemission by a glass bead monolayer for high-sensitivity, long-range imaging of upconverting phosphors.
    Sandnes B; Kelf TA; Liu H; Zvyagin AV
    Opt Lett; 2011 Aug; 36(15):3009-11. PubMed ID: 21808388
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fluorescence quantum efficiency measurements in the presence of Auger upconversion by the thermal lens method.
    Pilla V; Catunda T; Jenssen HP; Cassanho A
    Opt Lett; 2003 Feb; 28(4):239-41. PubMed ID: 12653358
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recent Progress and Applications of Thermal Lens Spectrometry and Photothermal Beam Deflection Techniques in Environmental Sensing.
    Franko M; Goljat L; Liu M; Budasheva H; Žorž Furlan M; Korte D
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617073
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Measurement of thermal diffusivities of silver nanoparticle colloidal suspensions by means of a frequency-resolved thermal lensing approach.
    Rodriguez L; Cárdenas-García JF; Vera CC
    Opt Lett; 2014 Jun; 39(12):3406-9. PubMed ID: 24978497
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Detection of zeptomole quantities of nonfluorescent molecules in a 10(1) nm nanochannel by thermal lens microscopy.
    Le TH; Mawatari K; Shimizu H; Kitamori T
    Analyst; 2014 Jun; 139(11):2721-5. PubMed ID: 24759977
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Unusual behavior of thermal lens in alcohols.
    Kumar P; Dinda S; Chakraborty A; Goswami D
    Phys Chem Chem Phys; 2014 Jun; 16(24):12291-8. PubMed ID: 24818714
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel technique for thermal lens measurement in commonly used optical components.
    Bogan C; Kwee P; Hild S; Huttner SH; Willke B
    Opt Express; 2015 Jun; 23(12):15380-9. PubMed ID: 26193518
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermal lens technique: a new method of absorption spectroscopy.
    Long ME; Swofford RL; Albrecht AC
    Science; 1976 Jan; 191(4223):183-5. PubMed ID: 1246605
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Single-beam interface thermal lensing.
    Gugliotti M; Baptista MS; Dias LG; Politi MJ
    Appl Opt; 1999 Mar; 38(7):1213-5. PubMed ID: 18305734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.