These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
710 related articles for article (PubMed ID: 21726755)
1. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Guo K; Qian K; Zhang S; Kong J; Yu C; Liu B Talanta; 2011 Aug; 85(2):1174-9. PubMed ID: 21726755 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Shan C; Yang H; Han D; Zhang Q; Ivaska A; Niu L Biosens Bioelectron; 2010 Feb; 25(6):1504-8. PubMed ID: 20007014 [TBL] [Abstract][Full Text] [Related]
4. Toluidine blue adsorbed on alcohol dehydrogenase modified glassy carbon electrode for voltammetric determination of ethanol. Periasamy AP; Umasankar Y; Chen SM Talanta; 2011 Jan; 83(3):930-6. PubMed ID: 21147339 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing. Teymourian H; Salimi A; Hallaj R Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121 [TBL] [Abstract][Full Text] [Related]
6. A sensitive NADH and ethanol biosensor based on graphene-Au nanorods nanocomposites. Li L; Lu H; Deng L Talanta; 2013 Sep; 113():1-6. PubMed ID: 23708615 [TBL] [Abstract][Full Text] [Related]
7. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M; Shang L; Li B; Huang L; Dong S Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421 [TBL] [Abstract][Full Text] [Related]
8. Glucose sensor based on an electrochemical reduced graphene oxide-poly(L-lysine) composite film modified GC electrode. Hua L; Wu X; Wang R Analyst; 2012 Dec; 137(24):5716-9. PubMed ID: 23082313 [TBL] [Abstract][Full Text] [Related]
9. Toward more efficient bioelectrocatalytic oxidation of ethanol for amperometric sensing and biofuel cell technology. Kowalewska B; Kulesza PJ Anal Chem; 2012 Nov; 84(21):9564-71. PubMed ID: 23066916 [TBL] [Abstract][Full Text] [Related]
10. Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene. Chang H; Wu X; Wu C; Chen Y; Jiang H; Wang X Analyst; 2011 Jul; 136(13):2735-40. PubMed ID: 21594262 [TBL] [Abstract][Full Text] [Related]
11. Mediatorless voltammetric oxidation of NADH and sensing of ethanol. Raj CR; Behera S Biosens Bioelectron; 2005 Dec; 21(6):949-56. PubMed ID: 16257664 [TBL] [Abstract][Full Text] [Related]
12. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Ping J; Wang Y; Fan K; Wu J; Ying Y Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494 [TBL] [Abstract][Full Text] [Related]
13. Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Tsai YC; Huang JD; Chiu CC Biosens Bioelectron; 2007 Jun; 22(12):3051-6. PubMed ID: 17296295 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Aydoğdu Tığ G Talanta; 2017 Dec; 175():382-389. PubMed ID: 28842007 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application. Tian J; Deng SY; Li DL; Shan D; He W; Zhang XJ; Shi Y Biosens Bioelectron; 2013 Nov; 49():466-71. PubMed ID: 23811480 [TBL] [Abstract][Full Text] [Related]
16. Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell. Umasankar Y; Adhikari BR; Chen A Bioelectrochemistry; 2017 Dec; 118():83-90. PubMed ID: 28772201 [TBL] [Abstract][Full Text] [Related]
17. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical biosensors based on redox carbon nanotubes prepared by noncovalent functionalization with 1,10-phenanthroline-5,6-dione. Mao X; Wu Y; Xu L; Cao X; Cui X; Zhu L Analyst; 2011 Jan; 136(2):293-8. PubMed ID: 20957284 [TBL] [Abstract][Full Text] [Related]
19. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Wu L; Zhang X; Ju H Anal Chem; 2007 Jan; 79(2):453-8. PubMed ID: 17222007 [TBL] [Abstract][Full Text] [Related]
20. Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrodeposited on single walled carbon nanotubes-modified pencil graphite electrode. Zhu J; Wu XY; Shan D; Yuan PX; Zhang XJ Talanta; 2014 Dec; 130():96-102. PubMed ID: 25159384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]