These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21726856)

  • 21. Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
    Kaptein RG; Van Gisbergen JA
    J Neurophysiol; 2006 Mar; 95(3):1936-48. PubMed ID: 16319209
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple-object tracking is based on scene, not retinal, coordinates.
    Liu G; Austen EL; Booth KS; Fisher BD; Argue R; Rempel MI; Enns JT
    J Exp Psychol Hum Percept Perform; 2005 Apr; 31(2):235-47. PubMed ID: 15826227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A speed-dependent inversion effect in dynamic object matching.
    Balas B; Sinha P
    J Vis; 2009 Feb; 9(2):16.1-13. PubMed ID: 19271926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Representation of dynamic spatial configurations in visual short-term memory.
    Papenmeier F; Huff M; Schwan S
    Atten Percept Psychophys; 2012 Feb; 74(2):397-415. PubMed ID: 22090188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal dynamics of attentional control settings in patients with spatial neglect.
    Ptak R; Golay L
    Brain Res; 2006 May; 1092(1):190-7. PubMed ID: 16643863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Attentional prioritizations based on spatial probabilities can be maintained on multiple moving objects.
    Feria CS
    Atten Percept Psychophys; 2010 May; 72(4):926-38. PubMed ID: 20436190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial memory enhances the precision of angular self-motion updating.
    Arthur JC; Philbeck JW; Chichka D
    Exp Brain Res; 2007 Dec; 183(4):557-68. PubMed ID: 17684736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Updating visual space during motion in depth.
    Li N; Angelaki DE
    Neuron; 2005 Oct; 48(1):149-58. PubMed ID: 16202715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural mechanisms of attentional shifts due to irrelevant spatial and numerical cues.
    Ranzini M; Dehaene S; Piazza M; Hubbard EM
    Neuropsychologia; 2009 Oct; 47(12):2615-24. PubMed ID: 19465038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determining priority between attentional and referential-coding sources of the Simon effect through optokinetic stimulation.
    Figliozzi F; Silvetti M; Rubichi S; Doricchi F
    Neuropsychologia; 2010 Mar; 48(4):1011-5. PubMed ID: 19961865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Judgements of relative direction: the effect of task instructions on spatial recall.
    Donaldson P; Tlauka M; Robertson C
    Q J Exp Psychol (Hove); 2013 Jun; 66(6):1090-103. PubMed ID: 23057609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic and predictive links between touch and vision.
    Gray R; Tan HZ
    Exp Brain Res; 2002 Jul; 145(1):50-5. PubMed ID: 12070744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An advantage for detecting dynamic targets in natural scenes.
    Vuong QC; Hof AF; Bülthoff HH; Thornton IM
    J Vis; 2006 Jan; 6(1):87-96. PubMed ID: 16489861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tracking an object through feature space.
    Blaser E; Pylyshyn ZW; Holcombe AO
    Nature; 2000 Nov; 408(6809):196-9. PubMed ID: 11089972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required.
    Gaffan EA; Bannerman DM; Healey AN
    Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A category adjustment approach to memory for spatial location in natural scenes.
    Holden MP; Curby KM; Newcombe NS; Shipley TF
    J Exp Psychol Learn Mem Cogn; 2010 May; 36(3):590-604. PubMed ID: 20438259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociation of exteroceptive and idiothetic orientation cues: effect on hippocampal place cells and place navigation.
    Bures J; Fenton AA; Kaminsky Y; Rossier J; Sacchetti B; Zinyuk L
    Philos Trans R Soc Lond B Biol Sci; 1997 Oct; 352(1360):1515-24. PubMed ID: 9368940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.