These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 2172702)

  • 1. Distinction between hydroxyl radical and ferryl species.
    Rush JD; Maskos Z; Koppenol WH
    Methods Enzymol; 1990; 186():148-56. PubMed ID: 2172702
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of the excited ferryl species following Fenton reaction.
    Shen X; Tian J; Li J; Li X; Chen Y
    Free Radic Biol Med; 1992 Nov; 13(5):585-92. PubMed ID: 1334032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The generation of ferryl or hydroxyl radicals during interaction of hemeproteins with hydrogen peroxide.
    Kanner J; Harel S; Salan AM
    Basic Life Sci; 1988; 49():145-8. PubMed ID: 2854977
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydroxyl free radical formation from hydrogen peroxide by ferrous iron-nucleotide complexes.
    Floyd RA; Lewis CA
    Biochemistry; 1983 May; 22(11):2645-9. PubMed ID: 6307343
    [No Abstract]   [Full Text] [Related]  

  • 5. Cellobiose oxidase from Phanerochaete chrysosporium as a source of Fenton's reagent.
    Kremer SM; Wood PM
    Biochem Soc Trans; 1992 May; 20(2):110S. PubMed ID: 1327893
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c.
    Rush JD; Koppenol WH
    J Biol Chem; 1986 May; 261(15):6730-3. PubMed ID: 3009473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically active cyanine dyes as probes for the identification of active oxygen species.
    Hori H; Nakagawa Y; Ojima H; Niijima T; Terada H
    Adv Exp Med Biol; 1992; 317():255-60. PubMed ID: 1337657
    [No Abstract]   [Full Text] [Related]  

  • 8. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.
    Imlay JA; Chin SM; Linn S
    Science; 1988 Apr; 240(4852):640-2. PubMed ID: 2834821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of caffeic acid and its related catechols on hydroxyl radical formation by 3-hydroxyanthranilic acid, ferric chloride, and hydrogen peroxide.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Arch Biochem Biophys; 1990 Jan; 276(1):242-7. PubMed ID: 2153363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic investigation of intermediates formed during the Fenton reagent mediated degradation of N-nitrosodimethylamine: evidence for an oxidative pathway not involving hydroxyl radical.
    Wink DA; Nims RW; Desrosiers MF; Ford PC; Keefer LK
    Chem Res Toxicol; 1991; 4(5):510-2. PubMed ID: 1665352
    [No Abstract]   [Full Text] [Related]  

  • 12. Hydroxyl radicals do not crosslink a DNA-lysozyme complex.
    Werbin H; Cheng CJ
    Carcinogenesis; 1985 Dec; 6(12):1689-91. PubMed ID: 2998638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide.
    Weitzman SA; Graceffa P
    Arch Biochem Biophys; 1984 Jan; 228(1):373-6. PubMed ID: 6320737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADP-iron as a Fenton reactant: radical reactions detected by spin trapping, hydrogen abstraction, and aromatic hydroxylation.
    Gutteridge JM; Nagy I; Maidt L; Floyd RA
    Arch Biochem Biophys; 1990 Mar; 277(2):422-8. PubMed ID: 2155582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of dioxygen.
    Green MJ; Hill HA
    Methods Enzymol; 1984; 105():3-22. PubMed ID: 6328186
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes.
    Cederbaum AI; Qureshi A
    Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new simple and rapid electrochemical method for the determination of hydroxyl radical generated by Fenton reaction and its application.
    Zou H; Tai C; Gu XX; Zhu RH; Guo QH
    Anal Bioanal Chem; 2002 May; 373(1-2):111-5. PubMed ID: 12012181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide.
    Gutteridge JM
    FEBS Lett; 1984 Jul; 172(2):245-9. PubMed ID: 6086389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct demonstration that ferrous ion complexes of di- and triphosphate nucleotides catalyze hydroxyl free radical formation from hydrogen peroxide.
    Floyd RA
    Arch Biochem Biophys; 1983 Aug; 225(1):263-70. PubMed ID: 6311103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.