BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21727036)

  • 1. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion.
    Jarem DA; Wilson NR; Schermerhorn KM; Delaney S
    DNA Repair (Amst); 2011 Aug; 10(8):887-96. PubMed ID: 21727036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence.
    Jarem DA; Wilson NR; Delaney S
    Biochemistry; 2009 Jul; 48(28):6655-63. PubMed ID: 19527055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion.
    Xu M; Lai Y; Torner J; Zhang Y; Zhang Z; Liu Y
    Nucleic Acids Res; 2014 Apr; 42(6):3675-91. PubMed ID: 24423876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal.
    Beaver JM; Lai Y; Rolle SJ; Liu Y
    DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trinucleotide repeat DNA alters structure to minimize the thermodynamic impact of 8-oxo-7,8-dihydroguanine.
    Volle CB; Jarem DA; Delaney S
    Biochemistry; 2012 Jan; 51(1):52-62. PubMed ID: 22148399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair.
    Beaver JM; Lai Y; Xu M; Casin AH; Laverde EE; Liu Y
    Nucleic Acids Res; 2015 Jul; 43(12):5948-60. PubMed ID: 25990721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidized dNTPs and the OGG1 and MUTYH DNA glycosylases combine to induce CAG/CTG repeat instability.
    Cilli P; Ventura I; Minoprio A; Meccia E; Martire A; Wilson SH; Bignami M; Mazzei F
    Nucleic Acids Res; 2016 Jun; 44(11):5190-203. PubMed ID: 26980281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities.
    Laverde EE; Lai Y; Leng F; Balakrishnan L; Freudenreich CH; Liu Y
    J Biol Chem; 2020 Oct; 295(40):13902-13913. PubMed ID: 32763971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiation of 8-oxoguanine base excision repair within trinucleotide tandem repeats.
    Derevyanko AG; Endutkin AV; Ishchenko AA; Saparbaev MK; Zharkov DO
    Biochemistry (Mosc); 2012 Mar; 77(3):270-9. PubMed ID: 22803944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step.
    Vidal AE; Hickson ID; Boiteux S; Radicella JP
    Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice.
    Goula AV; Berquist BR; Wilson DM; Wheeler VC; Trottier Y; Merienne K
    PLoS Genet; 2009 Dec; 5(12):e1000749. PubMed ID: 19997493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excision by the human methylpurine DNA N-glycosylase of cyanuric acid, a stable and mutagenic oxidation product of 8-oxo-7,8-dihydroguanine.
    Dherin C; Gasparutto D; O'Connor TR; Cadet J; Boiteux S
    Int J Radiat Biol; 2004 Jan; 80(1):21-7. PubMed ID: 14761847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instability of CTG repeats is governed by the position of a DNA base lesion through base excision repair.
    Lai Y; Xu M; Zhang Z; Liu Y
    PLoS One; 2013; 8(2):e56960. PubMed ID: 23468897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of cellular signaling by 8-oxoguanine DNA glycosylase-1-initiated DNA base excision repair.
    German P; Szaniszlo P; Hajas G; Radak Z; Bacsi A; Hazra TK; Hegde ML; Ba X; Boldogh I
    DNA Repair (Amst); 2013 Oct; 12(10):856-63. PubMed ID: 23890570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats.
    Goula AV; Pearson CE; Della Maria J; Trottier Y; Tomkinson AE; Wilson DM; Merienne K
    Biochemistry; 2012 May; 51(18):3919-32. PubMed ID: 22497302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment.
    Bilotti K; Kennedy EE; Li C; Delaney S
    DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.