BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21727036)

  • 21. Product inhibition and magnesium modulate the dual reaction mode of hOgg1.
    Morland I; Luna L; Gustad E; Seeberg E; Bjørås M
    DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An oxidized abasic lesion inhibits base excision repair leading to DNA strand breaks in a trinucleotide repeat tract.
    Beaver JM; Lai Y; Rolle SJ; Weng L; Greenberg MM; Liu Y
    PLoS One; 2018; 13(2):e0192148. PubMed ID: 29389977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion.
    Liu Y; Prasad R; Beard WA; Hou EW; Horton JK; McMurray CT; Wilson SH
    J Biol Chem; 2009 Oct; 284(41):28352-28366. PubMed ID: 19674974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2.
    Leipold MD; Workman H; Muller JG; Burrows CJ; David SS
    Biochemistry; 2003 Sep; 42(38):11373-81. PubMed ID: 14503888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells.
    Kovtun IV; Liu Y; Bjoras M; Klungland A; Wilson SH; McMurray CT
    Nature; 2007 May; 447(7143):447-52. PubMed ID: 17450122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1.
    Xu M; Gabison J; Liu Y
    Nucleic Acids Res; 2013 Feb; 41(3):1684-97. PubMed ID: 23258707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos.
    Wang R; Li C; Qiao P; Xue Y; Zheng X; Chen H; Zeng X; Liu W; Boldogh I; Ba X
    Cell Death Dis; 2018 May; 9(6):628. PubMed ID: 29795387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trinucleotide repeat instability via DNA base excision repair.
    Lai Y; Beaver JM; Laverde E; Liu Y
    DNA Repair (Amst); 2020 Sep; 93():102912. PubMed ID: 33087278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
    Kladova OA; Bazlekowa-Karaban M; Baconnais S; Piétrement O; Ishchenko AA; Matkarimov BT; Iakovlev DA; Vasenko A; Fedorova OS; Le Cam E; Tudek B; Kuznetsov NA; Saparbaev M
    DNA Repair (Amst); 2018 Apr; 64():10-25. PubMed ID: 29475157
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA base excision repair: a mechanism of trinucleotide repeat expansion.
    Liu Y; Wilson SH
    Trends Biochem Sci; 2012 Apr; 37(4):162-72. PubMed ID: 22285516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Global DNA dynamics of 8-oxoguanine repair by human OGG1 revealed by stopped-flow kinetics and molecular dynamics simulation.
    Lukina MV; Koval VV; Lomzov AA; Zharkov DO; Fedorova OS
    Mol Biosyst; 2017 Sep; 13(10):1954-1966. PubMed ID: 28770925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Mechanisms Associated with Clustered Lesion-Induced Impairment of 8-oxoG Recognition by the Human Glycosylase OGG1.
    Jiang T; Monari A; Dumont E; Bignon E
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic and DNA-binding properties of the human Ogg1 DNA N-glycosylase/AP lyase: biochemical exploration of H270, Q315 and F319, three amino acids of the 8-oxoguanine-binding pocket.
    van der Kemp PA; Charbonnier JB; Audebert M; Boiteux S
    Nucleic Acids Res; 2004; 32(2):570-8. PubMed ID: 14752045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unique Length-Dependent Biophysical Properties of Repetitive DNA.
    Huang J; Delaney S
    J Phys Chem B; 2016 May; 120(18):4195-203. PubMed ID: 27115707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidative DNA damage repair in mammalian cells: a new perspective.
    Hazra TK; Das A; Das S; Choudhury S; Kow YW; Roy R
    DNA Repair (Amst); 2007 Apr; 6(4):470-80. PubMed ID: 17116430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerobic endurance capacity affects spatial memory and SIRT1 is a potent modulator of 8-oxoguanine repair.
    Sarga L; Hart N; Koch LG; Britton SL; Hajas G; Boldogh I; Ba X; Radak Z
    Neuroscience; 2013 Nov; 252():326-36. PubMed ID: 23973402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Ogg1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity.
    Girard PM; Guibourt N; Boiteux S
    Nucleic Acids Res; 1997 Aug; 25(16):3204-11. PubMed ID: 9241232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and characterization of an ascidian homolog of the human 8-oxoguanine DNA glycosylase (Ogg1) that is involved in the repair of 8-oxo-7,8-dihydroguanine in DNA in Ciona intestinalis.
    Jin G; Zhang QM; Satou Y; Satoh N; Kasai H; Yonei S
    Int J Radiat Biol; 2006 Apr; 82(4):241-50. PubMed ID: 16690592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.