These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21727327)

  • 1. Fabrication and electrical characterization of circuits based on individual tin oxide nanowires.
    Hernández-Ramírez F; Tarancón A; Casals O; Rodríguez J; Romano-Rodríguez A; Morante JR; Barth S; Mathur S; Choi TY; Poulikakos D; Callegari V; Nellen PM
    Nanotechnology; 2006 Nov; 17(22):5577-83. PubMed ID: 21727327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable microsensors based on individual SnO2 nanowires.
    Hernandez-Ramirez F; Prades JD; Tarancon A; Barth S; Casals O; Jiménez-Diaz R; Pellicer E; Rodriguez J; Juli MA; Romano-Rodriguez A; Morante JR; Mathur S; Helwig A; Spannhake J; Mueller G
    Nanotechnology; 2007 Dec; 18(49):495501. PubMed ID: 20442472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric contacts on a single SnO₂ nanowire device: an investigation using an equivalent circuit model.
    Huh J; Na J; Ha JS; Kim S; Kim GT
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3097-102. PubMed ID: 21774484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct-write fabrication of a nanoscale digital logic element on a single nanowire.
    Roy S; Gao Z
    Nanotechnology; 2010 Jun; 21(24):245306. PubMed ID: 20498519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct integration of metal oxide nanowires into an effective gas sensing device.
    Vomiero A; Ponzoni A; Comini E; Ferroni M; Faglia G; Sberveglieri G
    Nanotechnology; 2010 Apr; 21(14):145502. PubMed ID: 20220218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Ohmic nanocontacts via surface modification for nanowire-based electronic and optoelectronic devices: ZnO nanowires as an example.
    He JH; Ke JJ; Chang PH; Tsai KT; Yang PC; Chan IM
    Nanoscale; 2012 Jun; 4(11):3399-404. PubMed ID: 22588602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water vapor detection with individual tin oxide nanowires.
    Hernandez-Ramirez F; Barth S; Tarancon A; Casals O; Pellicer E; Rodriguez J; Romano-Rodriguez A; Morante JR; Mathur S
    Nanotechnology; 2007 Oct; 18(42):424016. PubMed ID: 21730449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts.
    Song TB; Chen Y; Chung CH; Yang YM; Bob B; Duan HS; Li G; Tu KN; Huang Y; Yang Y
    ACS Nano; 2014 Mar; 8(3):2804-11. PubMed ID: 24517263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and electrical properties of electrospun tin-doped indium oxide nanowires.
    Lin D; Wu H; Zhang R; Pan W
    Nanotechnology; 2007 Nov; 18(46):465301. PubMed ID: 21730472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-soldering of magnetically aligned three-dimensional nanowire networks.
    Gao F; Gu Z
    Nanotechnology; 2010 Mar; 21(11):115604. PubMed ID: 20179331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.
    Shi P; Zhang J; Lin HY; Bohn PW
    Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise voltage contrast image assisted positioning for in situ electron beam nanolithography for nanodevice fabrication with suspended nanowire structures.
    Long R; Chen J; Lim JH; Wiley JB; Zhou W
    Nanotechnology; 2009 Jul; 20(28):285306. PubMed ID: 19546502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response.
    Herderick ED; Polomoff NA; Huey BD; Padture NP
    Nanotechnology; 2010 Aug; 21(33):335601. PubMed ID: 20657040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures.
    Wu Y; Xiang J; Yang C; Lu W; Lieber CM
    Nature; 2004 Jul; 430(6995):61-5. PubMed ID: 15229596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanowire circuits fabricated by AFM oxidation nanolithography.
    Martínez RV; Martínez J; Garcia R
    Nanotechnology; 2010 Jun; 21(24):245301. PubMed ID: 20484797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.
    Chiu SP; Chung HF; Lin YH; Kai JJ; Chen FR; Lin JJ
    Nanotechnology; 2009 Mar; 20(10):105203. PubMed ID: 19417513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport in high-resistance semiconductor nanowires through two-probe measurements.
    Lin YF; Chen TH; Chang CH; Chang YW; Chiu YC; Hung HC; Kai JJ; Liu Z; Fang J; Jian WB
    Phys Chem Chem Phys; 2010 Sep; 12(36):10928-32. PubMed ID: 20657947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.