These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21727357)

  • 1. Synthesis of and recognition by ribonuclease A imprinted polymers.
    Hsu CY; Lin HY; Thomas JL; Chou TC
    Nanotechnology; 2006 Feb; 17(4):S77-83. PubMed ID: 21727357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers.
    Hsu CY; Lin HY; Thomas JL; Wu BT; Chou TC
    Biosens Bioelectron; 2006 Sep; 22(3):355-63. PubMed ID: 16781138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The microcontact imprinting of proteins: the effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin.
    Lin HY; Hsu CY; Thomas JL; Wang SE; Chen HC; Chou TC
    Biosens Bioelectron; 2006 Oct; 22(4):534-43. PubMed ID: 16973344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers.
    Wu X; Goswami K; Shimizu KD
    J Mol Recognit; 2008; 21(6):410-8. PubMed ID: 18698665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding site characteristics of 17beta-estradiol imprinted polymers.
    Wei S; Mizaikoff B
    Biosens Bioelectron; 2007 Sep; 23(2):201-9. PubMed ID: 17540554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers.
    He JF; Zhu QH; Deng QY
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Aug; 67(5):1297-305. PubMed ID: 17142092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the formulation of a myoglobin molecularly imprinted thin-film polymer--formed using a micro-contact imprinting method.
    Lin HY; Rick J; Chou TC
    Biosens Bioelectron; 2007 Jun; 22(12):3293-301. PubMed ID: 17223334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin molecularly imprinted polymers: preparation, recognition characteristics and properties as sorbent for solid-phase extraction.
    Song X; Li J; Wang J; Chen L
    Talanta; 2009 Dec; 80(2):694-702. PubMed ID: 19836539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of molecularly imprinted polymers as tailored templates for the solid-state [2+2] photodimerization.
    Wu X; Shimizu KD
    Biosens Bioelectron; 2009 Nov; 25(3):640-6. PubMed ID: 19269158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.
    Philip JY; Buchweishaija J; Mkayula LL; Ye L
    J Agric Food Chem; 2007 Oct; 55(22):8870-6. PubMed ID: 17927136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic approach to forming micro-contact imprints of creatine kinase.
    Chen YW; Rick J; Chou TC
    Org Biomol Chem; 2009 Feb; 7(3):488-94. PubMed ID: 19156314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of molecularly imprinted polymer: the choice of cross-linker.
    Muhammad T; Nur Z; Piletska EV; Yimit O; Piletsky SA
    Analyst; 2012 Jun; 137(11):2623-8. PubMed ID: 22534800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: a re-examination.
    Fu GQ; Yu H; Zhu J
    Biomaterials; 2008 May; 29(13):2138-42. PubMed ID: 18276004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of recognition of fructose by imprinted polymers.
    Rajkumar R; Warsinke A; Möhwald H; Scheller FW; Katterle M
    Talanta; 2008 Sep; 76(5):1119-23. PubMed ID: 18761164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design.
    Dirion B; Cobb Z; Schillinger E; Andersson LI; Sellergren B
    J Am Chem Soc; 2003 Dec; 125(49):15101-9. PubMed ID: 14653745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
    Meng AC; LeJeune J; Spivak DA
    J Mol Recognit; 2009; 22(2):121-8. PubMed ID: 19195014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the molecularly imprinted polymers with methyl-testosterone as the template.
    Yang M; Gu W; Sun L; Zhang F; Ling Y; Chu X; Wang D
    Talanta; 2010 Apr; 81(1-2):156-61. PubMed ID: 20188902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic cross-selectivity study of the factors influencing template receptor interactions in molecularly imprinted nitrogen heterocycles.
    Cummins W; Duggan P; McLoughlin P
    Biosens Bioelectron; 2006 Sep; 22(3):372-80. PubMed ID: 16820289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube.
    Lee HY; Kim BS
    Biosens Bioelectron; 2009 Nov; 25(3):587-91. PubMed ID: 19394212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of background sites in molecularly imprinted polymers via urea-urea monomer aggregation.
    Zhang Y; Song D; Brown JC; Shimizu KD
    Org Biomol Chem; 2011 Jan; 9(1):120-6. PubMed ID: 21103521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.