These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21727382)
1. A self-assembled synthesis of carbon nanotubes for interconnects. Chen Z; Cao G; Lin Z; Koehler I; Bachmann PK Nanotechnology; 2006 Feb; 17(4):1062-6. PubMed ID: 21727382 [TBL] [Abstract][Full Text] [Related]
2. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
3. Growth and characterization of horizontally suspended CNTs across TiN electrode gaps. Santini CA; Cott DJ; Romo-Negreira A; Capraro BD; Sanseverino SR; De Gendt S; Groeseneken G; Vereecken PM Nanotechnology; 2010 Jun; 21(24):245604. PubMed ID: 20498525 [TBL] [Abstract][Full Text] [Related]
4. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
6. 3-D perpendicular assembly of single walled carbon nanotubes for complimentary metal oxide semiconductor interconnects. Kim TH; Yilmaz C; Somu S; Busnaina A J Nanosci Nanotechnol; 2014 May; 14(5):3673-6. PubMed ID: 24734611 [TBL] [Abstract][Full Text] [Related]
7. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
8. Growth of carbon nanotubes on cobalt catalyst film using electron cyclotron resonance chemical vapour deposition without thermal heating. Wu WT; Chen KH; Hsu CM Nanotechnology; 2006 Sep; 17(18):4542-7. PubMed ID: 21727575 [TBL] [Abstract][Full Text] [Related]
9. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects. Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623 [TBL] [Abstract][Full Text] [Related]
10. Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Zhu Y; Lim X; Sim MC; Lim CT; Sow CH Nanotechnology; 2008 Aug; 19(32):325304. PubMed ID: 21828811 [TBL] [Abstract][Full Text] [Related]
11. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nessim GD Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718 [TBL] [Abstract][Full Text] [Related]
12. Establishing Ohmic contacts for in situ current-voltage characteristic measurements on a carbon nanotube inside the scanning electron microscope. Chen Q; Wang S; Peng LM Nanotechnology; 2006 Feb; 17(4):1087-98. PubMed ID: 21727386 [TBL] [Abstract][Full Text] [Related]
13. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
14. Growth of metal-free carbon nanotubes on glass substrate with an amorphous carbon catalyst layer. Seo JK; Choi WS; Kim HD; Lee JH; Choi EC; Kim HJ; Hong B J Nanosci Nanotechnol; 2011 Dec; 11(12):11032-6. PubMed ID: 22409050 [TBL] [Abstract][Full Text] [Related]
15. Optimized network of multi-walled carbon nanotubes for chemical sensing. Gohier A; Chancolon J; Chenevier P; Porterat D; Mayne-L'Hermite M; Reynaud C Nanotechnology; 2011 Mar; 22(10):105501. PubMed ID: 21289407 [TBL] [Abstract][Full Text] [Related]
16. High-rate low-temperature growth of vertically aligned carbon nanotubes. Shang NG; Tan YY; Stolojan V; Papakonstantinou P; Silva SR Nanotechnology; 2010 Dec; 21(50):505604. PubMed ID: 21098946 [TBL] [Abstract][Full Text] [Related]
17. Attachment of carbon nanotubes to atomic force microscope probes. Gibson CT; Carnally S; Roberts CJ Ultramicroscopy; 2007 Oct; 107(10-11):1118-22. PubMed ID: 17644251 [TBL] [Abstract][Full Text] [Related]
18. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
19. The use of microwave plasma-assisted CVD on nanostructured iron catalysts to grow isolated bundles of carbon nanotubes. Assouar MB; Dossot M; Rizk S; Tiusan C; Bougdira J Nanotechnology; 2010 Feb; 21(6):065708. PubMed ID: 20057030 [TBL] [Abstract][Full Text] [Related]
20. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects. Schulze A; Hantschel T; Dathe A; Eyben P; Ke X; Vandervorst W Nanotechnology; 2012 Aug; 23(30):305707. PubMed ID: 22781880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]