These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21727400)

  • 1. Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction.
    Heyde M; Sterrer M; Rust HP; Freund HJ
    Nanotechnology; 2006 Apr; 17(7):S101-6. PubMed ID: 21727400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FM-AFM constant height imaging and force curves: high resolution study of DNA-tip interactions.
    Cerreta A; Vobornik D; Di Santo G; Tobenas S; Alonso-Sarduy L; Adamcik J; Dietler G
    J Mol Recognit; 2012 Sep; 25(9):486-93. PubMed ID: 22899592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of energy dissipation on NaCl(001) in non-contact atomic force microscopy.
    Langewisch G; Fuchs H; Schirmeisen A
    Nanotechnology; 2010 Aug; 21(34):345703. PubMed ID: 20683136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional dynamic force spectroscopy measurements on KBr(001): atomic deformations at small tip-sample separations.
    Fremy S; Kawai S; Pawlak R; Glatzel T; Baratoff A; Meyer E
    Nanotechnology; 2012 Feb; 23(5):055401. PubMed ID: 22238288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical manifestations of rare atomic jumps in dynamic force microscopy.
    Hoffmann R; Baratoff A; Hug HJ; Hidber HR; Löhneysen HV; Güntherodt HJ
    Nanotechnology; 2007 Oct; 18(39):395503. PubMed ID: 21730418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the viscoelastic response of glassy polymer films using atomic force microscopy.
    Yang G; Rao N; Yin Z; Zhu DM
    J Colloid Interface Sci; 2006 May; 297(1):104-11. PubMed ID: 16300781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces.
    Ondráček M; González C; Jelínek P
    J Phys Condens Matter; 2012 Feb; 24(8):084003. PubMed ID: 22310019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverting amplitude and phase to reconstruct tip-sample interaction forces in tapping mode atomic force microscopy.
    Hu S; Raman A
    Nanotechnology; 2008 Sep; 19(37):375704. PubMed ID: 21832558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and stability of semiconductor tip apexes for atomic force microscopy.
    Pou P; Ghasemi SA; Jelinek P; Lenosky T; Goedecker S; Perez R
    Nanotechnology; 2009 Jul; 20(26):264015. PubMed ID: 19509446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A procedure to determine the optimum imaging parameters for atomic/molecular resolution frequency modulation atomic force microscopy.
    Hosokawa Y; Kobayashi K; Oyabu N; Matsushige K; Yamada H
    Rev Sci Instrum; 2010 Sep; 81(9):093701. PubMed ID: 20886981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.
    Martínez NF; García R
    Nanotechnology; 2006 Apr; 17(7):S167-72. PubMed ID: 21727409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically resolved imaging by low-temperature frequency-modulation atomic force microscopy using a quartz length-extension resonator.
    An T; Nishio T; Eguchi T; Ono M; Nomura A; Akiyama K; Hasegawa Y
    Rev Sci Instrum; 2008 Mar; 79(3):033703. PubMed ID: 18377011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data acquisition and analysis procedures for high-resolution atomic force microscopy in three dimensions.
    Albers BJ; Schwendemann TC; Baykara MZ; Pilet N; Liebmann M; Altman EI; Schwarz UD
    Nanotechnology; 2009 Jul; 20(26):264002. PubMed ID: 19509455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M; Hynninen T; Soini TM; Pivetta M; Henry CR; Foster AS; Esch F; Barth C; Heiz U
    Phys Chem Chem Phys; 2010 Apr; 12(13):3203-9. PubMed ID: 20237710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing dynamic scanning force microscopy in air: as close as possible.
    Palacios-Lidón E; Pérez-García B; Colchero J
    Nanotechnology; 2009 Feb; 20(8):085707. PubMed ID: 19417468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells.
    Rabinovich Y; Esayanur M; Daosukho S; Byer K; El-Shall H; Khan S
    J Colloid Interface Sci; 2005 May; 285(1):125-35. PubMed ID: 15797405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Evaluation of SERS-Active Ag Film Nanostructure by Atomic Force Microscopy.
    Roark SE; Semin DJ; Rowlen KL
    Anal Chem; 1996 Feb; 68(3):473-80. PubMed ID: 21619084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.