BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21727407)

  • 1. Kelvin probe force microscopy on surfaces of UHV cleaved ionic crystals.
    Barth C; Henry CR
    Nanotechnology; 2006 Apr; 17(7):S155-61. PubMed ID: 21727407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface double layer on (001) surfaces of alkali halide crystals: a scanning force microscopy study.
    Barth C; Henry CR
    Phys Rev Lett; 2007 Mar; 98(13):136804. PubMed ID: 17501229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy.
    Barth C; Henry CR
    Phys Rev Lett; 2003 Nov; 91(19):196102. PubMed ID: 14611590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M; Hynninen T; Soini TM; Pivetta M; Henry CR; Foster AS; Esch F; Barth C; Heiz U
    Phys Chem Chem Phys; 2010 Apr; 12(13):3203-9. PubMed ID: 20237710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and nanostructure of CeO2(111) surfaces of single crystals and Si(111) supported ceria films.
    Pieper HH; Derks C; Zoellner MH; Olbrich R; Tröger L; Schroeder T; Neumann M; Reichling M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15361-8. PubMed ID: 23060225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.
    Glatzel T; Zimmerli L; Koch S; Such B; Kawai S; Meyer E
    Nanotechnology; 2009 Jul; 20(26):264016. PubMed ID: 19509456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices.
    Gysin U; Glatzel T; Schmölzer T; Schöner A; Reshanov S; Bartolf H; Meyer E
    Beilstein J Nanotechnol; 2015; 6():2485-97. PubMed ID: 26885461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
    Neff JL; Milde P; León CP; Kundrat MD; Eng LM; Jacob CR; Hoffmann-Vogel R
    ACS Nano; 2014 Apr; 8(4):3294-301. PubMed ID: 24601525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging Suzuki precipitates on NaCl : Mg2+ (001) by scanning force microscopy.
    Barth C; Henry CR
    Phys Rev Lett; 2008 Mar; 100(9):096101. PubMed ID: 18352726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How flat is an air-cleaved mica surface?
    Ostendorf F; Schmitz C; Hirth S; Kühnle A; Kolodziej JJ; Reichling M
    Nanotechnology; 2008 Jul; 19(30):305705. PubMed ID: 21828772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on atomic-resolution frequency-modulation Kelvin-probe force-microscopy imaging of semiconductors.
    Sadewasser S; Jelinek P; Fang CK; Custance O; Yamada Y; Sugimoto Y; Abe M; Morita S
    Phys Rev Lett; 2009 Dec; 103(26):266103. PubMed ID: 20366324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.
    Tsukada M; Masago A; Shimizu M
    J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kelvin probe force microscopy of charged indentation-induced dislocation structures in KBr.
    Egberts P; Filleter T; Bennewitz R
    Nanotechnology; 2009 Jul; 20(26):264005. PubMed ID: 19509459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-Scale Imaging of the Surface Dipole Distribution of Stepped Surfaces.
    Pérez León C; Drees H; Wippermann SM; Marz M; Hoffmann-Vogel R
    J Phys Chem Lett; 2016 Feb; 7(3):426-30. PubMed ID: 26758503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode.
    Moores B; Hane F; Eng L; Leonenko Z
    Ultramicroscopy; 2010 May; 110(6):708-11. PubMed ID: 20363077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.