These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21727409)

  • 1. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.
    Martínez NF; García R
    Nanotechnology; 2006 Apr; 17(7):S167-72. PubMed ID: 21727409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM.
    Gómez CJ; Garcia R
    Ultramicroscopy; 2010 May; 110(6):626-33. PubMed ID: 20227184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.
    Lin SM
    Ultramicroscopy; 2007; 107(2-3):245-53. PubMed ID: 16982149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular scale energy dissipation in oligothiophene monolayers measured by dynamic force microscopy.
    Martínez NF; Kamiński W; Gómez CJ; Albonetti C; Biscarini F; Pérez R; García R
    Nanotechnology; 2009 Oct; 20(43):434021. PubMed ID: 19801766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy dissipation effects on imaging of soft materials by dynamic atomic force microscopy: a DNA-chip study.
    Phaner-Goutorbe M; Iazykov M; Villey R; Sicard D; Robach Y
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2311-6. PubMed ID: 23498263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous dissipation and size dependencies of dissipative processes in nanoscale interactions.
    Gadelrab KR; Santos S; Chiesa M
    Langmuir; 2013 Feb; 29(7):2200-6. PubMed ID: 23336271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing material properties of polymeric surface layers with tapping mode AFM: which cantilever spring constant, tapping amplitude and amplitude set point gives good image contrast and minimal surface damage?
    Thormann E; Pettersson T; Kettle J; Claesson PM
    Ultramicroscopy; 2010 Mar; 110(4):313-9. PubMed ID: 20133064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of nanoscale dissipation processes by dynamic atomic force microscopy.
    Garcia R; Gómez CJ; Martinez NF; Patil S; Dietz C; Magerle R
    Phys Rev Lett; 2006 Jul; 97(1):016103. PubMed ID: 16907387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the tip in non-contact atomic force microscopy dissipation images of ionic surfaces.
    Federici Canova F; Foster AS
    Nanotechnology; 2011 Jan; 22(4):045702. PubMed ID: 21157016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films.
    Scott WW; Bhushan B
    Ultramicroscopy; 2003; 97(1-4):151-69. PubMed ID: 12801668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy imaging using a tip-on-chip: opening the door to integrated near field nanotools.
    Hayton J; Polesel-Maris J; Demadrille R; Brun M; Thoyer F; Lubin C; Cousty J; Grévin B
    Rev Sci Instrum; 2010 Sep; 81(9):093707. PubMed ID: 20886987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FM-AFM constant height imaging and force curves: high resolution study of DNA-tip interactions.
    Cerreta A; Vobornik D; Di Santo G; Tobenas S; Alonso-Sarduy L; Adamcik J; Dietler G
    J Mol Recognit; 2012 Sep; 25(9):486-93. PubMed ID: 22899592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical manifestations of rare atomic jumps in dynamic force microscopy.
    Hoffmann R; Baratoff A; Hug HJ; Hidber HR; Löhneysen HV; Güntherodt HJ
    Nanotechnology; 2007 Oct; 18(39):395503. PubMed ID: 21730418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase imaging with intermodulation atomic force microscopy.
    Platz D; Tholén EA; Hutter C; von Bieren AC; Haviland DB
    Ultramicroscopy; 2010 May; 110(6):573-7. PubMed ID: 20227182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of atomic force microscopy to the study of natural and model soil particles.
    Cheng S; Bryant R; Doerr SH; Rhodri Williams P; Wright CJ
    J Microsc; 2008 Sep; 231(3):384-94. PubMed ID: 18754993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy.
    Vasić B; Matković A; Gajić R
    Nanotechnology; 2017 Nov; 28(46):465708. PubMed ID: 29059053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude and frequency modulation torsional resonance mode atomic force microscopy of a mineral surface.
    Yurtsever A; Gigler AM; Stark RW
    Ultramicroscopy; 2009 Feb; 109(3):275-9. PubMed ID: 19131169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tip-sample interaction.
    Heyde M; Sterrer M; Rust HP; Freund HJ
    Nanotechnology; 2006 Apr; 17(7):S101-6. PubMed ID: 21727400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy dissipation distributions and dissipative atomic processes in amplitude modulation atomic force microscopy.
    Santos S; Gadelrab KR; Silvernail A; Armstrong P; Stefancich M; Chiesa M
    Nanotechnology; 2012 Mar; 23(12):125401. PubMed ID: 22398328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.