These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21727427)

  • 1. Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions.
    Triozon F; Lambin P; Roche S
    Nanotechnology; 2005 Feb; 16(2):230-3. PubMed ID: 21727427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically resolved single-walled carbon nanotube intramolecular junctions.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Jan; 291(5501):97-100. PubMed ID: 11141554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier.
    Havu P; Hashemi MJ; Kaukonen M; Seppälä ET; Nieminen RM
    J Phys Condens Matter; 2011 Mar; 23(11):112203. PubMed ID: 21358037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic transport in Z-junction carbon nanotubes.
    Zhang J; Shi QW; Yang J
    J Chem Phys; 2004 Apr; 120(16):7733-7. PubMed ID: 15267685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When double-wall carbon nanotubes can become metallic or semiconducting.
    Moradian R; Azadi S; Refii-Tabar H
    J Phys Condens Matter; 2007 Apr; 19(17):176209. PubMed ID: 21690955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic properties of nanotube-ribbon hybrid systems.
    Li TS; Chang SC; Lien JY; Lin MF
    Nanotechnology; 2008 Mar; 19(10):105703. PubMed ID: 21817711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanodiode based on a multiwall CN(x)/carbon nanotube intramolecular junction.
    Chai Y; Zhou XL; Li PJ; Zhang WJ; Zhang QF; Wu JL
    Nanotechnology; 2005 Oct; 16(10):2134-7. PubMed ID: 20817985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transport between graphene layers covalently connected by carbon nanotubes.
    Novaes FD; Rurali R; Ordejón P
    ACS Nano; 2010 Dec; 4(12):7596-602. PubMed ID: 21186844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic and electronic structure of carbon strings.
    Tongay S; Dag S; Durgun E; Senger RT; Ciraci S
    J Phys Condens Matter; 2005 Jun; 17(25):3823-36. PubMed ID: 21690699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic transport, transition-voltage spectroscopy, and the Fano effect in single molecule junctions composed of a biphenyl molecule attached to metallic and semiconducting carbon nanotube electrodes.
    Brito da Silva Júnior CA; Leal JF; Aleixo VF; Pinheiro FA; Del Nero J
    Phys Chem Chem Phys; 2014 Sep; 16(36):19602-7. PubMed ID: 25109887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate voltage dependent characteristics of p-n diodes and bipolar transistors based on multiwall CN(x)/carbon nanotube intramolecular junctions.
    Zhang WJ; Zhang QF; Chai Y; Shen X; Wu JL
    Nanotechnology; 2007 Oct; 18(39):395205. PubMed ID: 21730416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance.
    Meunier V; Sumpter BG
    J Chem Phys; 2005 Jul; 123(2):24705. PubMed ID: 16050764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of chemically inert, graphene-based all-carbon electronic devices with 0.8 eV gap.
    Qi JS; Huang JY; Feng J; Shi da N; Li J
    ACS Nano; 2011 May; 5(5):3475-82. PubMed ID: 21456598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of electronic and transport properties of PPy-Pt(111) and PPy-C(111):H interfaces.
    Kamiński W; Rozsíval V; Jelínek P
    J Phys Condens Matter; 2010 Feb; 22(4):045003. PubMed ID: 21386305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the electronic structure of semiconducting nanotubes resulting from different metal contacts.
    Tarakeshwar P; Kim DM
    J Phys Chem B; 2005 Apr; 109(16):7601-4. PubMed ID: 16851878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong effects of molecular structure on electron transport in carbon/molecule/copper electronic junctions.
    Anariba F; Steach JK; McCreery RL
    J Phys Chem B; 2005 Jun; 109(22):11163-72. PubMed ID: 16852362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions.
    Yao Y; Li Q; Zhang J; Liu R; Jiao L; Zhu YT; Liu Z
    Nat Mater; 2007 Apr; 6(4):283-6. PubMed ID: 17369833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductance of carbon nanotubes in a transverse electric field and an arbitrary magnetic field.
    Li TS; Lin MF
    Nanotechnology; 2006 Nov; 17(22):5632-8. PubMed ID: 21727335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the Properties of Bent and Straight Single-Walled Carbon Nanotube Intramolecular Junctions.
    Xue B; Shao X; Cai W
    J Chem Theory Comput; 2009 Jun; 5(6):1554-9. PubMed ID: 26609848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.