These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21727430)

  • 21. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates.
    Wen X; Wang S; Xie Y; Li XY; Yang S
    J Phys Chem B; 2005 May; 109(20):10100-6. PubMed ID: 16852224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process.
    Cui X; Yu SH; Li L; Biao L; Li H; Mo M; Liu XM
    Chemistry; 2004 Jan; 10(1):218-23. PubMed ID: 14695566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-step preparation of single-crystalline beta-MnO2 nanotubes.
    Zheng D; Sun S; Fan W; Yu H; Fan C; Cao G; Yin Z; Song X
    J Phys Chem B; 2005 Sep; 109(34):16439-43. PubMed ID: 16853090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bicrystalline hematite nanowires.
    Wang R; Chen Y; Fu Y; Zhang H; Kisielowski C
    J Phys Chem B; 2005 Jun; 109(25):12245-9. PubMed ID: 16852510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent.
    Liu Z; Xu D; Liang J; Shen J; Zhang S; Qian Y
    J Phys Chem B; 2005 Jun; 109(21):10699-704. PubMed ID: 16852299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes.
    Sun S; Zhang G; Zhong Y; Liu H; Li R; Zhou X; Sun X
    Chem Commun (Camb); 2009 Dec; (45):7048-50. PubMed ID: 19904390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of single crystal metal sulfide nanowires and nanowire arrays by chemical precipitation in templates.
    Mu C; He J
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8191-8. PubMed ID: 21121315
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled synthesis of LaPO(4) and CePO(4) nanorods/nanowires.
    Cao M; Hu C; Wu Q; Guo C; Qi Y; Wang E
    Nanotechnology; 2005 Feb; 16(2):282-6. PubMed ID: 21727437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents.
    Lan WJ; Yu SH; Qian HS; Wan Y
    Langmuir; 2007 Mar; 23(6):3409-17. PubMed ID: 17295530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single crystalline La0.7Sr0.3MnO3 molecular sieve nanowires with high temperature ferromagnetism.
    Carretero-Genevrier A; Gázquez J; Idrobo JC; Oró J; Arbiol J; Varela M; Ferain E; Rodríguez-Carvajal J; Puig T; Mestres N; Obradors X
    J Am Chem Soc; 2011 Mar; 133(11):4053-61. PubMed ID: 21351770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol.
    Xu D; Liu Z; Liang J; Qian Y
    J Phys Chem B; 2005 Aug; 109(30):14344-9. PubMed ID: 16852804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of ZrO2 nanowires by ionic-liquid route.
    Dong WS; Lin FQ; Liu CL; Li MY
    J Colloid Interface Sci; 2009 May; 333(2):734-40. PubMed ID: 19249058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-temperature large-scale synthesis and electrical testing of ultralong copper nanowires.
    Mohl M; Pusztai P; Kukovecz A; Konya Z; Kukkola J; Kordas K; Vajtai R; Ajayan PM
    Langmuir; 2010 Nov; 26(21):16496-502. PubMed ID: 20597526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage.
    Yan W; Ayvazian T; Kim J; Liu Y; Donavan KC; Xing W; Yang Y; Hemminger JC; Penner RM
    ACS Nano; 2011 Oct; 5(10):8275-87. PubMed ID: 21942449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process.
    Qian HS; Yu SH; Gong JY; Luo LB; Fei LF
    Langmuir; 2006 Apr; 22(8):3830-5. PubMed ID: 16584263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of oxidative etching in the synthesis of ultrathin single-crystalline Au nanowires.
    Kisner A; Heggen M; Fernández E; Lenk S; Mayer D; Simon U; Offenhäusser A; Mourzina Y
    Chemistry; 2011 Aug; 17(34):9503-7. PubMed ID: 21735495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes.
    Bai YH; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Jun; 24(10):2985-90. PubMed ID: 19345085
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.
    Jiang H; Zhao T; Ma J; Yan C; Li C
    Chem Commun (Camb); 2011 Jan; 47(4):1264-6. PubMed ID: 21103484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction.
    Cheng F; Shen J; Ji W; Tao Z; Chen J
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):460-6. PubMed ID: 20353237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bismuth nanowires for potential applications in nanoscale electronics technology.
    Cronin SB; Lin YM; Rabin O; Black MR; Dresselhaus G; Dresselhaus MS; Gai PL
    Microsc Microanal; 2002 Feb; 8(1):58-63. PubMed ID: 12533205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.