These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21727452)

  • 1. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation.
    Paur HR; Baumann W; Mätzing H; Seifert H
    Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames.
    Grotheer HH; Pokorny H; Barth KL; Thierley M; Aigner M
    Chemosphere; 2004 Dec; 57(10):1335-42. PubMed ID: 15519378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of metal additives in light scattering from flame particulates.
    Charalampopoulos TT; Hahn DW; Chang H
    Appl Opt; 1992 Oct; 31(30):6519-28. PubMed ID: 20733870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl.
    Poliak M; Fomin A; Tsionsky V; Cheskis S; Wlokas I; Rahinov I
    Phys Chem Chem Phys; 2015 Jan; 17(1):680-5. PubMed ID: 25407507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of combustion formed nanoparticles.
    Sgro LA; Basile G; Barone AC; D'Anna A; Minutolo P; Borghese A; D'Alessio A
    Chemosphere; 2003 Jun; 51(10):1079-90. PubMed ID: 12718973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the effect of iron on PM10 formation and design of a particle-generating system using a cocentric diffusion burner flame.
    Yang G
    J Air Waste Manag Assoc; 2004 Aug; 54(8):898-907. PubMed ID: 15373357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames.
    Appel J; Bockhorn H; Wulkow M
    Chemosphere; 2001; 42(5-7):635-45. PubMed ID: 11219689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.
    di Stasio S; Konstandopoulos AG; Kostoglou M
    J Colloid Interface Sci; 2002 Mar; 247(1):33-46. PubMed ID: 16290438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous detection of two types of soot precursor particles using photoionization mass spectrometry.
    Baquet TG; Grotheer HH; Aigner M
    Rapid Commun Mass Spectrom; 2007; 21(24):4060-4. PubMed ID: 18008386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of nanometer-sized aerosol particles: reactions of molecular oxygen with 30 nm soot particles as a function of oxygen partial pressure.
    Nienow AM; Roberts JT; Zachariah MR
    J Phys Chem B; 2005 Mar; 109(12):5561-8. PubMed ID: 16851597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.
    Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR
    Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-angle X-ray studies of soot inception and growth.
    Hessler JP; Seifert S; Winans RE; Fletcher TH
    Faraday Discuss; 2001; (119):395-407; discussion 445-59. PubMed ID: 11878003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small porous-plug burner for studies of combustion chemistry and soot formation.
    Campbell MF; Schrader PE; Catalano AL; Johansson KO; Bohlin GA; Richards-Henderson NK; Kliewer CJ; Michelsen HA
    Rev Sci Instrum; 2017 Dec; 88(12):125106. PubMed ID: 29289223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass Spectrometric Study on the Combustion of Tetramethylsilane and the Formation of Silicon Oxide Clusters in Premixed Laminar Low-Pressure Synthesis Flames.
    Karakaya Y; Peukert S; Kasper T
    J Phys Chem A; 2018 Sep; 122(36):7131-7141. PubMed ID: 30113832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical structure factor measurements of soot particles in a prmixed flame.
    Gangopadhyay S; Elminyawi I; Sorensen CM
    Appl Opt; 1991 Nov; 30(33):4859-64. PubMed ID: 20717290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute pulmonary effects of ultrafine particles in rats and mice.
    Oberdörster G; Finkelstein JN; Johnston C; Gelein R; Cox C; Baggs R; Elder AC
    Res Rep Health Eff Inst; 2000 Aug; (96):5-74; disc. 75-86. PubMed ID: 11205815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of nano- and micron-sized airborne and collected subway particles, a multi-analytical approach.
    Midander K; Elihn K; Wallén A; Belova L; Karlsson AK; Wallinder IO
    Sci Total Environ; 2012 Jun; 427-428():390-400. PubMed ID: 22551935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.