These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21727463)

  • 1. Size and distribution prediction for nanoparticles produced by microemulsion precipitation: A Monte Carlo simulation study.
    Voigt A; Adityawarman D; Sundmacher K
    Nanotechnology; 2005 Jul; 16(7):S429-34. PubMed ID: 21727463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Muthukumaran D; Bandyopadhyaya R
    Langmuir; 2007 Mar; 23(6):3418-23. PubMed ID: 17305375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo models for nanoparticle formation in two microemulsion systems.
    Jain R; Mehra A
    Langmuir; 2004 Jul; 20(15):6507-13. PubMed ID: 15248743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical nucleus size effects on nanoparticle formation in microemulsions: a comparison study between experimental and simulation results.
    Tojo C; Barroso F; de Dios M
    J Colloid Interface Sci; 2006 Apr; 296(2):591-8. PubMed ID: 16271722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle precipitation in reverse microemulsions: particle formation dynamics and tailoring of particle size distributions.
    Niemann B; Veit P; Sundmacher K
    Langmuir; 2008 Apr; 24(8):4320-8. PubMed ID: 18307367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the kinetics of nanoparticle formation in microemulsions.
    de Dios M; Barroso F; Tojo C; López-Quintela MA
    J Colloid Interface Sci; 2009 May; 333(2):741-8. PubMed ID: 19215939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle precipitation in microemulsions: Population balance model and identification of bivariate droplet exchange kernel.
    Niemann B; Sundmacher K
    J Colloid Interface Sci; 2010 Feb; 342(2):361-71. PubMed ID: 19942227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Monte Carlo simulation of semiconductor nanocrystal synthesis in microemulsion droplets.
    Kuriyedath SR; Kostova B; Kevrekidis IG; Mountziaris TJ
    Langmuir; 2010 Jul; 26(13):11355-62. PubMed ID: 20392123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions.
    Husein MM; Rodil E; Vera JH
    Langmuir; 2006 Feb; 22(5):2264-72. PubMed ID: 16489816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of hydrodynamics on the precipitation efficiency--application to HARDTAC reactor.
    Génin A; Essemiani K; Lemoine C; Barbier E; Logette S
    Water Sci Technol; 2007; 56(11):101-8. PubMed ID: 18057647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of size distribution of lipid-peptide-DNA vector particles using Monte Carlo simulation techniques.
    Sarkar S; Zhang H; Levy SM; Hart SL; Hailes HC; Tabor AB; Shamlou PA
    Biotechnol Appl Biochem; 2003 Aug; 38(Pt 1):95-102. PubMed ID: 12803539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an intensified narrow channel reactor to the aqueous phase precipitation of barium sulphate.
    McCarthy ED; Dunk WA; Boodhoo KV
    J Colloid Interface Sci; 2007 Jan; 305(1):72-87. PubMed ID: 17064716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo commissioning of clinical electron beams using large field measurements.
    O'Shea TP; Sawkey DL; Foley MJ; Faddegon BA
    Phys Med Biol; 2010 Jul; 55(14):4083-105. PubMed ID: 20601775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code.
    Merheb C; Petegnief Y; Talbot JN
    Phys Med Biol; 2007 Feb; 52(3):563-76. PubMed ID: 17228105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the Monte Carlo method to study the alpha particle energy spectra for radioactive aerosol sampled by an air filter.
    Geryes T; Monsanglant-Louvet C; Berger L; Gehin E
    Health Phys; 2009 Aug; 97(2):125-31. PubMed ID: 19590272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.