These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21727463)

  • 21. Hybrid monte carlo method for simulation of two-component aerosol coagulation and phase segregation.
    Efendiev Y; Zachariah MR
    J Colloid Interface Sci; 2002 May; 249(1):30-43. PubMed ID: 16290566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach.
    Castin N; Pascuet MI; Malerba L
    J Chem Phys; 2011 Aug; 135(6):064502. PubMed ID: 21842938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS.
    Lambert PC; Sutton AJ; Burton PR; Abrams KR; Jones DR
    Stat Med; 2005 Aug; 24(15):2401-28. PubMed ID: 16015676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation.
    Lehnert W; Gregoire MC; Reilhac A; Meikle SR
    Phys Med Biol; 2011 Jun; 56(11):3313-35. PubMed ID: 21558591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions.
    Nassar NN; Husein MM
    Langmuir; 2007 Dec; 23(26):13093-103. PubMed ID: 18004891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling weight variability in a pan coating process using Monte Carlo simulations.
    Pandey P; Katakdaunde M; Turton R
    AAPS PharmSciTech; 2006 Oct; 7(4):83. PubMed ID: 17233536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of pellet shape, size and distribution on capsule filling--a preliminary evaluation of three-dimensional computer simulation using a Monte-Carlo technique.
    Rowe RC; York P; Colbourn EA; Roskilly SJ
    Int J Pharm; 2005 Aug; 300(1-2):32-7. PubMed ID: 16002245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insights into diffusion in 3D crowded media by Monte Carlo simulations: effect of size, mobility and spatial distribution of obstacles.
    Vilaseca E; Isvoran A; Madurga S; Pastor I; Garcés JL; Mas F
    Phys Chem Chem Phys; 2011 Apr; 13(16):7396-407. PubMed ID: 21412541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microemulsions as reaction media for the synthesis of Pt nanoparticles.
    Magno LM; Angelescu DG; Sigle W; Stubenrauch C
    Phys Chem Chem Phys; 2011 Feb; 13(8):3048-58. PubMed ID: 20882245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo simulation of 4-alpha-glucanotransferase reaction.
    Nakatani H
    Biopolymers; 1999 Aug; 50(2):145-51. PubMed ID: 10380338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchically nanostructured barium sulfate fibers.
    Romero-Ibarra IC; Rodríguez-Gattorno G; García-Sánchez MF; Sánchez-Solís A; Manero O
    Langmuir; 2010 May; 26(10):6954-9. PubMed ID: 20055367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correcting saturation effects of the arterial input function in dynamic susceptibility contrast-enhanced MRI: a Monte Carlo simulation.
    Brunecker P; Villringer A; Schultze J; Nolte CH; Jungehülsing GJ; Endres M; Steinbrink J
    Magn Reson Imaging; 2007 Nov; 25(9):1300-11. PubMed ID: 17462846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies to control the particle size distribution of poly-epsilon-caprolactone nanoparticles for pharmaceutical applications.
    Lince F; Marchisio DL; Barresi AA
    J Colloid Interface Sci; 2008 Jun; 322(2):505-15. PubMed ID: 18402975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-dimensional assemblies of charged nanoparticles in water: A simulation study.
    Richardi J
    J Chem Phys; 2009 Jan; 130(4):044701. PubMed ID: 19191398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).
    Hess F; Farkas A; Seitsonen AP; Over H
    J Comput Chem; 2012 Mar; 33(7):757-66. PubMed ID: 22253041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programs for calibration-based Monte Carlo simulation of recharge areas.
    Starn JJ; Bagtzoglou AC
    Ground Water; 2012; 50(3):472-6. PubMed ID: 21967487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques.
    Brualla L; Salvat F; Palanco-Zamora R
    Phys Med Biol; 2009 Jul; 54(13):4131-49. PubMed ID: 19521002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study.
    Zhang SX; Gao J; Buchholz TA; Wang Z; Salehpour MR; Drezek RA; Yu TK
    Biomed Microdevices; 2009 Aug; 11(4):925-33. PubMed ID: 19381816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.