These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 21727466)

  • 1. Adhesion of Pseudomonas fluorescens onto nanophase materials.
    Webster TJ; Tong Z; Liu J; Katherine Banks M
    Nanotechnology; 2005 Jul; 16(7):S449-57. PubMed ID: 21727466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.
    Webster TJ; Ejiofor JU
    Biomaterials; 2004 Aug; 25(19):4731-9. PubMed ID: 15120519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased osteoblast function on PLGA composites containing nanophase titania.
    Webster TJ; Smith TA
    J Biomed Mater Res A; 2005 Sep; 74(4):677-86. PubMed ID: 16035065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites.
    Liu H; Slamovich EB; Webster TJ
    Nanotechnology; 2005 Jul; 16(7):S601-8. PubMed ID: 21727482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites.
    McManus AJ; Doremus RH; Siegel RW; Bizios R
    J Biomed Mater Res A; 2005 Jan; 72(1):98-106. PubMed ID: 15538759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films.
    Miller DC; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2005 Jun; 73(4):476-84. PubMed ID: 15880725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased osteoblast adhesion on nanograined Ti modified with KRSR.
    Balasundaram G; Webster TJ
    J Biomed Mater Res A; 2007 Mar; 80(3):602-11. PubMed ID: 17031820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased osteoblast functions on theta + delta nanofiber alumina.
    Webster TJ; Hellenmeyer EL; Price RL
    Biomaterials; 2005 Mar; 26(9):953-60. PubMed ID: 15369683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles.
    Gutwein LG; Webster TJ
    Biomaterials; 2004 Aug; 25(18):4175-83. PubMed ID: 15046907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.
    Price RL; Ellison K; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2004 Jul; 70(1):129-38. PubMed ID: 15174117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast adhesion on nanophase ceramics.
    Webster TJ; Siegel RW; Bizios R
    Biomaterials; 1999 Jul; 20(13):1221-7. PubMed ID: 10395391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography.
    Dulgar-Tulloch AJ; Bizios R; Siegel RW
    J Biomed Mater Res A; 2009 Aug; 90(2):586-94. PubMed ID: 18563822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved osteoblast proliferation, differentiation and mineralization on nanophase Ti6Al4V.
    Han P; Ji WP; Zhao CL; Zhang XN; Jiang Y
    Chin Med J (Engl); 2011 Jan; 124(2):273-9. PubMed ID: 21362380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.
    Webster TJ; Ergun C; Doremus RH; Siegel RW; Bizios R
    J Biomed Mater Res; 2000 Sep; 51(3):475-83. PubMed ID: 10880091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion.
    Kay S; Thapa A; Haberstroh KM; Webster TJ
    Tissue Eng; 2002 Oct; 8(5):753-61. PubMed ID: 12459054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications.
    Sato M; Webster TJ
    Expert Rev Med Devices; 2004 Sep; 1(1):105-14. PubMed ID: 16293014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoblast function on nanophase alumina materials: Influence of chemistry, phase, and topography.
    Price RL; Gutwein LG; Kaledin L; Tepper F; Webster TJ
    J Biomed Mater Res A; 2003 Dec; 67(4):1284-93. PubMed ID: 14624515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion.
    Carpenter J; Khang D; Webster TJ
    Nanotechnology; 2008 Dec; 19(50):505103. PubMed ID: 19942760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion.
    Miller DC; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2007 Jun; 81(3):678-84. PubMed ID: 17187386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin.
    Webster TJ; Schadler LS; Siegel RW; Bizios R
    Tissue Eng; 2001 Jun; 7(3):291-301. PubMed ID: 11429149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.