These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21727487)

  • 1. Pick-and-place nanomanipulation using microfabricated grippers.
    Mølhave K; Wich T; Kortschack A; Bøggild P
    Nanotechnology; 2006 May; 17(10):2434-41. PubMed ID: 21727487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly.
    Xie H; Haliyo DS; Régnier S
    Nanotechnology; 2009 May; 20(21):215301. PubMed ID: 19423927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pick-and-place using chemically actuated microgrippers.
    Randhawa JS; Leong TG; Bassik N; Benson BR; Jochmans MT; Gracias DH
    J Am Chem Soc; 2008 Dec; 130(51):17238-9. PubMed ID: 19053402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ tensile testing of individual Co nanowires inside a scanning electron microscope.
    Zhang D; Breguet JM; Clavel R; Phillippe L; Utke I; Michler J
    Nanotechnology; 2009 Sep; 20(36):365706. PubMed ID: 19687546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Manipulators: Review of Conceptual Designs Through Recent Patents.
    Mekid S; Bashmal S; Ouakad HM
    Recent Pat Nanotechnol; 2016; 10(1):44-58. PubMed ID: 27018272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomanipulation and nanofabrication with multi-probe scanning tunneling microscope: from individual atoms to nanowires.
    Qin S; Kim TH; Wang Z; Li AP
    Rev Sci Instrum; 2012 Jun; 83(6):063704. PubMed ID: 22755631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Untethered Soft Grippers for Pick-and-Place Tasks.
    Ongaro F; Yoon C; van den Brink F; Abayazid M; Oh SH; Gracias DH; Misra S
    Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron; 2016 Jun; 2016():299-304. PubMed ID: 31482040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.
    Ding H; Shi C; Ma L; Yang Z; Wang M; Wang Y; Chen T; Sun L; Toshio F
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers.
    Sardan O; Eichhorn V; Petersen DH; Fatikow S; Sigmund O; Bøggild P
    Nanotechnology; 2008 Dec; 19(49):495503. PubMed ID: 21730675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous planning and control of soft untethered grippers in unstructured environments.
    Ongaro F; Scheggi S; Yoon C; den Brink FV; Oh SH; Gracias DH; Misra S
    J Microbio Robot; 2017; 12(1):45-52. PubMed ID: 29082127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Note: Mechanical and electrical characterization of nanowires in scanning electron microscope.
    Ru C; Sun L
    Rev Sci Instrum; 2011 Oct; 82(10):106105. PubMed ID: 22047343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical grippers based on the tuning of surface forces for applications in micro- and nanorobotics.
    Karg A; Kuznetsov V; Helfricht N; Lippitz M; Papastavrou G
    Sci Rep; 2023 May; 13(1):7885. PubMed ID: 37193686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in nanorobotic manipulation inside scanning electron microscopes.
    Shi C; Luu DK; Yang Q; Liu J; Chen J; Ru C; Xie S; Luo J; Ge J; Sun Y
    Microsyst Nanoeng; 2016; 2():16024. PubMed ID: 31057824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation.
    Iwata F; Mizuguchi Y; Ko H; Ushiki T
    J Electron Microsc (Tokyo); 2011 Dec; 60(6):359-66. PubMed ID: 22049270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical characterization of nickel nanowires by using a customized atomic force microscope.
    Celik E; Guven I; Madenci E
    Nanotechnology; 2011 Apr; 22(15):155702. PubMed ID: 21389567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated nanomanipulation for nanodevice construction.
    Zhang YL; Li J; To S; Zhang Y; Ye X; You L; Sun Y
    Nanotechnology; 2012 Feb; 23(6):065304. PubMed ID: 22248586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser Actuated Microgripper Using Optimized Chevron-Shaped Actuator.
    Ahmad B; Chambon H; Tissier P; Bolopion A
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-cost nanomanipulator for in situ experiments in a SEM.
    Nakabayashi D; Silva PC; González JC; Rodrigues V; Ugarte D
    Microsc Microanal; 2006 Aug; 12(4):311-6. PubMed ID: 16842643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing single DNA molecules manipulation by AFM.
    Long F; Wang C; Lü M; Zhang F; Sun J; Hu J
    J Microsc; 2011 Aug; 243(2):118-23. PubMed ID: 21534953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Evaluation of an Adjustable Compliant Constant-Force Microgripper.
    He J; Liu Y; Yang C; Tong Z; Wang G
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.