These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21727492)

  • 1. Concept of nonvolatile memory based on multiwall carbon nanotubes.
    Maslov L
    Nanotechnology; 2006 May; 17(10):2475-82. PubMed ID: 21727492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-based nonvolatile random access memory for molecular computing.
    Rueckes T; Kim K; Joselevich E; Tseng GY; Cheung CL; Lieber CM
    Science; 2000 Jul; 289(5476):94-7. PubMed ID: 10884232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of intertube van der Waals interaction on the stability of pristine and functionalized carbon nanotubes under compression.
    Kuang YD; Shi SQ; Chan PK; Chen CY
    Nanotechnology; 2010 Mar; 21(12):125704. PubMed ID: 20195018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple device unit consisting of all NiO storage and switch elements for multilevel terabit nonvolatile random access memory.
    Lee MJ; Ahn SE; Lee CB; Kim CJ; Jeon S; Chung UI; Yoo IK; Park GS; Han S; Hwang IR; Park BH
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4475-9. PubMed ID: 21988144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates.
    Johnson RD; Bahr DF; Richards CD; Richards RF; McClain D; Green J; Jiao J
    Nanotechnology; 2009 Feb; 20(6):065703. PubMed ID: 19417397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced field emission from multiwall carbon nanotube films by secondary growth.
    Klinke C; Delvigne E; Barth JV; Kern K
    J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering an Indium Selenide van der Waals Interface for Multilevel Charge Storage.
    Lu YY; Peng YT; Huang YT; Chen JN; Jhou J; Lan LW; Jian SH; Kuo CC; Hsieh SH; Chen CH; Sankar R; Chou FC
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4618-4625. PubMed ID: 33445863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes.
    Sawaya S; Arie T; Akita S
    Nanotechnology; 2011 Apr; 22(16):165702. PubMed ID: 21393815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-terminal nonvolatile memories based on single-walled carbon nanotubes.
    Yao J; Jin Z; Zhong L; Natelson D; Tour JM
    ACS Nano; 2009 Dec; 3(12):4122-6. PubMed ID: 19904998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-power switching of phase-change materials with carbon nanotube electrodes.
    Xiong F; Liao AD; Estrada D; Pop E
    Science; 2011 Apr; 332(6029):568-70. PubMed ID: 21393510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells.
    Abdullah CA; Asanithi P; Brunner EW; Jurewicz I; Bo C; Azad CL; Ovalle-Robles R; Fang S; Lima MD; Lepro X; Collins S; Baughman RH; Sear RP; Dalton AB
    Nanotechnology; 2011 May; 22(20):205102. PubMed ID: 21444962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light harvesting with multiwall carbon nanotube/silicon heterojunctions.
    Castrucci P; Scilletta C; Del Gobbo S; Scarselli M; Camilli L; Simeoni M; Delley B; Continenza A; De Crescenzi M
    Nanotechnology; 2011 Mar; 22(11):115701. PubMed ID: 21297234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory effects based on random networks of single-walled carbon nanotubes.
    Lee KW; Heo KY; Kim KM; Kim HJ
    Nanotechnology; 2009 Oct; 20(40):405210. PubMed ID: 19752496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube.
    Son JY; Ryu S; Park YC; Lim YT; Shin YS; Shin YH; Jang HM
    ACS Nano; 2010 Dec; 4(12):7315-20. PubMed ID: 21050014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A memristor-based nonvolatile latch circuit.
    Robinett W; Pickett M; Borghetti J; Xia Q; Snider GS; Medeiros-Ribeiro G; Williams RS
    Nanotechnology; 2010 Jun; 21(23):235203. PubMed ID: 20472941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonvolatile memory elements based on the intercalation of organic molecules inside carbon nanotubes.
    Meunier V; Kalinin SV; Sumpter BG
    Phys Rev Lett; 2007 Feb; 98(5):056401. PubMed ID: 17358877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electro-optic characteristics of a transparent nanophotonic device based on carbon nanotubes and liquid crystals.
    Rajasekharan R; Dai Q; Wilkinson TD
    Appl Opt; 2010 Apr; 49(11):2099-104. PubMed ID: 20390012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic domain-wall racetrack memory.
    Parkin SS; Hayashi M; Thomas L
    Science; 2008 Apr; 320(5873):190-4. PubMed ID: 18403702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.