These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21727499)

  • 1. Effect of nanoparticles on sessile droplet contact angle.
    Vafaei S; Borca-Tasciuc T; Podowski MZ; Purkayastha A; Ramanath G; Ajayan PM
    Nanotechnology; 2006 May; 17(10):2523-7. PubMed ID: 21727499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofluids alter the surface wettability of solids.
    Lim S; Horiuchi H; Nikolov AD; Wasan D
    Langmuir; 2015 Jun; 31(21):5827-35. PubMed ID: 25919686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanofluid surface wettability through asymptotic contact angle.
    Vafaei S; Wen D; Borca-Tasciuc T
    Langmuir; 2011 Mar; 27(6):2211-8. PubMed ID: 21338112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates.
    Sefiane K; Bennacer R
    Adv Colloid Interface Sci; 2009; 147-148():263-71. PubMed ID: 19019321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids.
    Vafaei S; Purkayastha A; Jain A; Ramanath G; Borca-Tasciuc T
    Nanotechnology; 2009 May; 20(18):185702. PubMed ID: 19420625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.
    Yang S; Pelton R
    Langmuir; 2011 Sep; 27(18):11409-15. PubMed ID: 21830818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets.
    Hampton MA; Nguyen TA; Nguyen AV; Xu ZP; Huang L; Rudolph V
    J Colloid Interface Sci; 2012 Jul; 377(1):456-62. PubMed ID: 22503627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles of varying hydrophobicity at the emulsion droplet-water interface: adsorption and coalescence stability.
    Simovic S; Prestidge CA
    Langmuir; 2004 Sep; 20(19):8357-65. PubMed ID: 15350114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the relationship between liquid droplet size and contact angle.
    Vafaei S; Podowski MZ
    Adv Colloid Interface Sci; 2005 May; 113(2-3):133-46. PubMed ID: 15904888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm).
    Karunakaran RG; Lu CH; Zhang Z; Yang S
    Langmuir; 2011 Apr; 27(8):4594-602. PubMed ID: 21355577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.
    Goswami D; Medda SK; De G
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3440-7. PubMed ID: 21823656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stick-slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration.
    Orejon D; Sefiane K; Shanahan ME
    Langmuir; 2011 Nov; 27(21):12834-43. PubMed ID: 21870776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: statics analysis and experiments.
    Kondiparty K; Nikolov A; Wu S; Wasan D
    Langmuir; 2011 Apr; 27(7):3324-35. PubMed ID: 21395240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets.
    Chon CH; Paik S; Tipton JB; Kihm KD
    Langmuir; 2007 Mar; 23(6):2953-60. PubMed ID: 17338500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.
    Zhong X; Duan F
    J Phys Chem B; 2014 Nov; 118(47):13636-45. PubMed ID: 25372453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle self-structuring in a nanofluid film spreading on a solid surface.
    Nikolov A; Kondiparty K; Wasan D
    Langmuir; 2010 Jun; 26(11):7665-70. PubMed ID: 20438106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions.
    Shen J; Liburdy JA; Pence DV; Narayanan V
    J Phys Condens Matter; 2009 Nov; 21(46):464133. PubMed ID: 21715897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.
    Harikrishnan AR; Dhar P; Agnihotri PK; Gedupudi S; Das SK
    J Phys Chem B; 2017 Jun; 121(24):6081-6095. PubMed ID: 28585819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sessile nanofluid droplet drying.
    Zhong X; Crivoi A; Duan F
    Adv Colloid Interface Sci; 2015 Mar; 217():13-30. PubMed ID: 25578408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.