These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21727531)

  • 1. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection.
    Kim D; Jeong S; Moon J
    Nanotechnology; 2006 Aug; 17(16):4019-24. PubMed ID: 21727531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.
    Nishioka M; Miyakawa M; Kataoka H; Koda H; Sato K; Suzuki TM
    Nanoscale; 2011 Jun; 3(6):2621-6. PubMed ID: 21552644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.
    Byeon JH; Kim YW
    Ultrason Sonochem; 2012 Jan; 19(1):209-15. PubMed ID: 21727021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.
    Song JY; Kim BS
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of poly(ethylene glycol) in the formation of silver nanoparticles.
    Luo C; Zhang Y; Zeng X; Zeng Y; Wang Y
    J Colloid Interface Sci; 2005 Aug; 288(2):444-8. PubMed ID: 15927611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and size control of monodisperse copper nanoparticles by polyol method.
    Park BK; Jeong S; Kim D; Moon J; Lim S; Kim JS
    J Colloid Interface Sci; 2007 Jul; 311(2):417-24. PubMed ID: 17448490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size.
    Prathna TC; Chandrasekaran N; Raichur AM; Mukherjee A
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):152-9. PubMed ID: 20833002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of silver and gold nanoparticles by a novel electrochemical method.
    Ma H; Yin B; Wang S; Jiao Y; Pan W; Huang S; Chen S; Meng F
    Chemphyschem; 2004 Jan; 5(1):68-75. PubMed ID: 14999845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering.
    Tang Y; He W; Zhou G; Wang S; Yang X; Tao Z; Zhou J
    Nanotechnology; 2012 Sep; 23(35):355304. PubMed ID: 22895119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-Assisted Coating of PMMA beads by silver nanoparticles.
    Irzh A; Perkas N; Gedanken A
    Langmuir; 2007 Sep; 23(19):9891-7. PubMed ID: 17705515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Silver Plates to Spherical Nanoparticles: Snapshots of Microwave-Assisted Polyol Synthesis.
    Torras M; Roig A
    ACS Omega; 2020 Mar; 5(11):5731-5738. PubMed ID: 32226851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of high-concentration, stable aqueous dispersions of uniform silver nanoparticles using aniline as a reductant.
    Yang J; Yin H; Jia J; Wei Y
    Langmuir; 2011 Apr; 27(8):5047-53. PubMed ID: 21434661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting.
    Chiu CW; Hong PD; Lin JJ
    Langmuir; 2011 Sep; 27(18):11690-6. PubMed ID: 21842869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials.
    Baghbanzadeh M; Skapin SD; Orel ZC; Kappe CO
    Chemistry; 2012 Apr; 18(18):5724-31. PubMed ID: 22454084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the kinetics of growth of silver nanoparticles in different surfactant solutions.
    Khan Z; Al-Thabaiti SA; El-Mossalamy EH; Obaid AY
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):284-8. PubMed ID: 19559581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Burst nucleation by hot injection for size controlled synthesis of ε-cobalt nanoparticles.
    Zacharaki E; Kalyva M; Fjellvåg H; Sjåstad AO
    Chem Cent J; 2016; 10():10. PubMed ID: 26958074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step synthesis of silver nanoparticles at the air-water interface using different methods.
    Liu HG; Xiao F; Wang CW; Lee YI; Xue Q; Chen X; Qian DJ; Hao J; Jiang J
    Nanotechnology; 2008 Feb; 19(5):055603. PubMed ID: 21817611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition-controlled synthesis of bimetallic gold-silver nanoparticles.
    Kariuki NN; Luo J; Maye MM; Hassan SA; Menard T; Naslund HR; Lin Y; Wang C; Engelhard MH; Zhong CJ
    Langmuir; 2004 Dec; 20(25):11240-6. PubMed ID: 15568881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.