BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21727599)

  • 1. Sol-gel assisted ZnO nanorod array template to synthesize TiO(2) nanotube arrays.
    Qiu J; Yu W; Gao X; Li X
    Nanotechnology; 2006 Sep; 17(18):4695-8. PubMed ID: 21727599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZnO@Co hybrid nanotube arrays growth from electrochemical deposition: structural, optical, photocatalytic and magnetic properties.
    Fan LY; Yu SH
    Phys Chem Chem Phys; 2009 May; 11(19):3710-7. PubMed ID: 19421482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films.
    Dev A; Panda SK; Kar S; Chakrabarti S; Chaudhuri S
    J Phys Chem B; 2006 Jul; 110(29):14266-72. PubMed ID: 16854131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO(2) core/shell nanorod arrays.
    Wang M; Huang C; Cao Y; Yu Q; Guo W; Liu Q; Liang J; Hong M
    Nanotechnology; 2009 Jul; 20(28):285311. PubMed ID: 19546501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable growth of highly ordered ZnO nanorod arrays via inverted self-assembled monolayer template.
    Dong JJ; Zhang XW; Yin ZG; Zhang SG; Wang JX; Tan HR; Gao Y; Si FT; Gao HL
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4388-95. PubMed ID: 21967127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.
    Koh JH; Koh JK; Seo JA; Shin JS; Kim JH
    Nanotechnology; 2011 Sep; 22(36):365401. PubMed ID: 21836328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterned rGO/ZnO:Al seed layer for vertical growth of single ZnO nanorods.
    Chalangar E; Mustafa E; Nur O; Willander M; Pettersson H
    Nanotechnology; 2023 Apr; 34(25):. PubMed ID: 36947870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable preferential-etching synthesis of ZnO nanotube arrays on SiO2 substrate for solid-phase microextraction.
    Li TM; Lin ZA; Zhang L; Chen G
    Analyst; 2010 Oct; 135(10):2694-9. PubMed ID: 20714516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The preparation and characterization of 1-D orderly ZnO nanorod arrarys].
    Liu R; Zhang T; Zhao SL; Xu Z; Zhang FJ; Yuan GC; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2249-53. PubMed ID: 19123382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous high-throughput phosphopeptide enrichment using microfluidic channels modified with aligned ZnO/TiO(2) nanorod arrays.
    He Z; Zhang Q; Wang H; Li Y
    Biomed Microdevices; 2011 Oct; 13(5):865-75. PubMed ID: 21698384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition.
    Ku SJ; Jo GC; Bak CH; Kim SM; Shin YR; Kim KH; Kwon SH; Kim JB
    Nanotechnology; 2013 Mar; 24(8):085301. PubMed ID: 23376893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of well-aligned amorphous carbon nanotubes and porous ZnO/C core-shell nanorod arrays for photosensor applications.
    Wang RC; Hsu CC; Chen SJ
    Nanotechnology; 2011 Jan; 22(3):035704. PubMed ID: 21149959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications.
    Tan LK; Kumar MK; An WW; Gao H
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):498-503. PubMed ID: 20356197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdS-encapsulated TiO2 nanotube arrays lidded with ZnO nanorod layers and their photoelectrocatalytic applications.
    Zhang YN; Zhao G; Lei Y; Li P; Li M; Jin Y; Lv B
    Chemphyschem; 2010 Nov; 11(16):3491-8. PubMed ID: 20853387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films.
    Hsu CH; Chen DH
    Nanotechnology; 2010 Jul; 21(28):285603. PubMed ID: 20562490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.