These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21727983)

  • 1. Sized controlled synthesis, purification, and cell studies with silicon quantum dots.
    Shiohara A; Prabakar S; Faramus A; Hsu CY; Lai PS; Northcote PT; Tilley RD
    Nanoscale; 2011 Aug; 3(8):3364-70. PubMed ID: 21727983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical reactions on surface molecules attached to silicon quantum dots.
    Shiohara A; Hanada S; Prabakar S; Fujioka K; Lim TH; Yamamoto K; Northcote PT; Tilley RD
    J Am Chem Soc; 2010 Jan; 132(1):248-53. PubMed ID: 20000400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective labeling of the endoplasmic reticulum in live cells with silicon quantum dots.
    Shen P; Ohta S; Inasawa S; Yamaguchi Y
    Chem Commun (Camb); 2011 Aug; 47(29):8409-11. PubMed ID: 21698318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconjugated silicon quantum dots from one-step green synthesis.
    Intartaglia R; Barchanski A; Bagga K; Genovese A; Das G; Wagener P; Di Fabrizio E; Diaspro A; Brandi F; Barcikowski S
    Nanoscale; 2012 Feb; 4(4):1271-4. PubMed ID: 22252263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface morphology dependent photoluminescence from colloidal silicon nanocrystals.
    Warner JH; Rubinsztein-Dunlop H; Tilley RD
    J Phys Chem B; 2005 Oct; 109(41):19064-7. PubMed ID: 16853458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications.
    Cheng X; Lowe SB; Reece PJ; Gooding JJ
    Chem Soc Rev; 2014 Apr; 43(8):2680-700. PubMed ID: 24395024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of self-association of bovine serum albumin on the stability of surfactant-induced aggregates of allylamine-capped silicon quantum dots.
    Chatterjee S; Mukherjee TK
    J Phys Chem B; 2013 Dec; 117(50):16110-6. PubMed ID: 24320984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconjugation of luminescent silicon quantum dots to gadolinium ions for bioimaging applications.
    Erogbogbo F; Chang CW; May JL; Liu L; Kumar R; Law WC; Ding H; Yong KT; Roy I; Sheshadri M; Swihart MT; Prasad PN
    Nanoscale; 2012 Sep; 4(17):5483-9. PubMed ID: 22854899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal size regime for oxidation-resistant silicon quantum dots.
    Li H; Lusk MT; Collins RT; Wu Z
    ACS Nano; 2012 Nov; 6(11):9690-9. PubMed ID: 23061893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple route to growth of silicon nanowires.
    Pan H; Ni Z; Poh C; Feng YP; Lin J; Shen Z
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5787-90. PubMed ID: 19198306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme free glucose sensing by amino-functionalized silicon quantum dot.
    Du L; Li Z; Yao J; Wen G; Dong C; Li HW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():303-309. PubMed ID: 30909086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized silicon quantum dots tailored for targeted siRNA delivery.
    Klein S; Zolk O; Fromm MF; Schrödl F; Neuhuber W; Kryschi C
    Biochem Biophys Res Commun; 2009 Sep; 387(1):164-8. PubMed ID: 19576864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-specific cellular uptake of surface-functionalized quantum dots.
    Kelf TA; Sreenivasan VK; Sun J; Kim EJ; Goldys EM; Zvyagin AV
    Nanotechnology; 2010 Jul; 21(28):285105. PubMed ID: 20585157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots.
    Ohta S; Inasawa S; Yamaguchi Y
    Biomaterials; 2012 Jun; 33(18):4639-45. PubMed ID: 22475529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quantum dots and their applications in cancer research].
    Chen LD; Li Y; Yuan HY; Pang DW
    Ai Zheng; 2006 May; 25(5):651-6. PubMed ID: 16687092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-tunable UV-luminescent silicon nanocrystals.
    Shirahata N; Tsuruoka T; Hasegawa T; Sakka Y
    Small; 2010 Apr; 6(8):915-21. PubMed ID: 20397207
    [No Abstract]   [Full Text] [Related]  

  • 19. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the optical gap of silicon quantum dots without changing their size.
    Li H; Wu Z; Zhou T; Sellinger A; Lusk MT
    Phys Chem Chem Phys; 2014 Sep; 16(36):19275-81. PubMed ID: 25098607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.