BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21728008)

  • 1. [From tumor tissue via primary cultures to xenograft models: a functional approach in prostate cancer research].
    Saar M; Kamradt J; Jung V; Stöckle M; Unteregger G
    Urologe A; 2011 Aug; 50(8):961-7. PubMed ID: 21728008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of a three-dimensional primary prostate cancer cell culture model].
    Jung V; Saar M; Grobholz R; Stöckle M; Unteregger G; Kamradt J
    Urologe A; 2008 Sep; 47(9):1199-204. PubMed ID: 18682911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CWR22 xenograft as an ex vivo human tumor model for prostate cancer gene therapy.
    Cheng L; Sun J; Pretlow TG; Culp J; Yang NS
    J Natl Cancer Inst; 1996 May; 88(9):607-11. PubMed ID: 8609662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New prospectives of prostate cancer gene therapy: molecular targets and animal models.
    Hsieh CL; Chung LW
    Crit Rev Eukaryot Gene Expr; 2001; 11(1-3):77-120. PubMed ID: 11693967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of seven new human prostate tumor xenograft models and their histopathological characterization.
    van Weerden WM; de Ridder CM; Verdaasdonk CL; Romijn JC; van der Kwast TH; Schröder FH; van Steenbrugge GJ
    Am J Pathol; 1996 Sep; 149(3):1055-62. PubMed ID: 8780407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking through a roadblock in prostate cancer research: an update on human model systems.
    Toivanen R; Taylor RA; Pook DW; Ellem SJ; Risbridger GP
    J Steroid Biochem Mol Biol; 2012 Sep; 131(3-5):122-31. PubMed ID: 22342674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo models of prostate cancer metastasis to bone.
    Singh AS; Figg WD
    J Urol; 2005 Sep; 174(3):820-6. PubMed ID: 16093963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthotopic tumorgrafts in nude mice: A new method to study human prostate cancer.
    Saar M; Körbel C; Linxweiler J; Jung V; Kamradt J; Hasenfus A; Stöckle M; Unteregger G; Menger MD
    Prostate; 2015 Oct; 75(14):1526-37. PubMed ID: 26074274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human prostate cancer in a clinically relevant xenograft mouse model: identification of β(1,6)-branched oligosaccharides as a marker of tumor progression.
    Lange T; Ullrich S; Müller I; Nentwich MF; Stübke K; Feldhaus S; Knies C; Hellwinkel OJ; Vessella RL; Abramjuk C; Anders M; Schröder-Schwarz J; Schlomm T; Huland H; Sauter G; Schumacher U
    Clin Cancer Res; 2012 Mar; 18(5):1364-73. PubMed ID: 22261809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastatic model for human prostate cancer using orthotopic implantation in nude mice.
    Stephenson RA; Dinney CP; Gohji K; Ordóñez NG; Killion JJ; Fidler IJ
    J Natl Cancer Inst; 1992 Jun; 84(12):951-7. PubMed ID: 1378502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal models of prostate cancer.
    Russell PJ; Voeks DJ
    Methods Mol Med; 2003; 81():89-112. PubMed ID: 12725117
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells.
    Krupski T; Harding MA; Herce ME; Gulding KM; Stoler MH; Theodorescu D
    Growth Factors; 2001; 18(4):287-302. PubMed ID: 11519827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current experimental human tissue-derived models for prostate cancer research.
    Kato M; Sasaki T; Inoue T
    Int J Urol; 2021 Feb; 28(2):150-162. PubMed ID: 33247498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biological behavior of prostate cancer cells in 3D culture systems].
    Watanabe M; Takagi A
    Yakugaku Zasshi; 2008 Jan; 128(1):37-44. PubMed ID: 18176054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration of enzymatically active prostate-specific antigen (PSA) in the extracellular fluid of primary human prostate cancers and human prostate cancer xenograft models.
    Denmeade SR; Sokoll LJ; Chan DW; Khan SR; Isaacs JT
    Prostate; 2001 Jun; 48(1):1-6. PubMed ID: 11391681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenoviral vector containing wild-type p16 suppresses prostate cancer growth and prolongs survival by inducing cell senescence.
    Steiner MS; Zhang Y; Farooq F; Lerner J; Wang Y; Lu Y
    Cancer Gene Ther; 2000 Mar; 7(3):360-72. PubMed ID: 10766342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer.
    Chauchereau A; Al Nakouzi N; Gaudin C; Le Moulec S; Compagno D; Auger N; Bénard J; Opolon P; Rozet F; Validire P; Fromont G; Fizazi K
    Exp Cell Res; 2011 Feb; 317(3):262-75. PubMed ID: 20974126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice.
    Yang J; Xie SX; Huang Y; Ling M; Liu J; Ran Y; Wang Y; Thrasher JB; Berkland C; Li B
    Nanomedicine (Lond); 2012 Sep; 7(9):1297-309. PubMed ID: 22583574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of MPR and TRAMP models of prostate cancer and prostate cancer metastasis for evaluation of therapeutic strategies.
    Voeks DJ; Martiniello-Wilks R; Russell PJ
    Urol Oncol; 2002; 7(3):111-8. PubMed ID: 12474544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of two human prostate cancer cell lines derived from a single bone metastasis.
    Navone NM; Olive M; Ozen M; Davis R; Troncoso P; Tu SM; Johnston D; Pollack A; Pathak S; von Eschenbach AC; Logothetis CJ
    Clin Cancer Res; 1997 Dec; 3(12 Pt 1):2493-500. PubMed ID: 9815652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.