BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21728121)

  • 1. The role of membrane cholesterol in neurotransmitter release from motor nerve terminals.
    Tarakanova OI; Petrov AM; Zefirov AL
    Dokl Biol Sci; 2011; 438():138-40. PubMed ID: 21728121
    [No Abstract]   [Full Text] [Related]  

  • 2. The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals.
    Lundh H; Thesleff S
    Eur J Pharmacol; 1977 Apr; 42(4):411-2. PubMed ID: 15849
    [No Abstract]   [Full Text] [Related]  

  • 3. Relative potencies of metal ions on transmitter release at mouse motor nerve terminals.
    Porter VA; Wray D
    Br J Pharmacol; 1996 May; 118(1):27-32. PubMed ID: 8733572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantal release of transmitter is not associated with channel opening on the neuronal membrane.
    Young SH; Chow I
    Science; 1987 Dec; 238(4834):1712-3. PubMed ID: 2891190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistical model supports the subunit hypothesis of quantal relsease.
    Matteson DR; Kreibel ME; Llados F
    Neurosci Lett; 1979 Dec; 15(2-3):147-52. PubMed ID: 43495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction.
    Rodrigues HA; Lima RF; Fonseca Mde C; Amaral EA; Martinelli PM; Naves LA; Gomez MV; Kushmerick C; Prado MA; Guatimosim C
    Eur J Neurosci; 2013 Oct; 38(7):2978-87. PubMed ID: 23841903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmitter secretion varies between visualized release sites at amphibian neuromuscular junctions.
    Bennett M; Jones P; Lavidis N
    Neurosci Lett; 1986 Apr; 65(3):311-5. PubMed ID: 2872629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of sialic acid in the nerve terminal for the release of transmitter.
    Nishimura M; Kozaki S; Sakaguchi G; Yagasaki O; Yanagiya I
    Life Sci; 1984 Dec; 35(24):2435-41. PubMed ID: 6151109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol-dependent kinase activity regulates transmitter release from cerebellar synapses.
    Smith AJ; Sugita S; Charlton MP
    J Neurosci; 2010 Apr; 30(17):6116-21. PubMed ID: 20427669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction.
    Kasimov MR; Giniatullin AR; Zefirov AL; Petrov AM
    Biochim Biophys Acta; 2015 May; 1851(5):674-85. PubMed ID: 25725358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals.
    Urbano FJ; Depetris RS; Uchitel OD
    Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Statistical analysis of the structure of a train of miniature endplate potentials following different treatments of the process of transmitter secretion].
    Polgar AA; Smirnova VS; Zinkevich VA
    Biull Eksp Biol Med; 1980 Jun; 89(6):654-7. PubMed ID: 6104995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous release of transmitter from 'repressed' nerve terminals in axolotl muscle.
    Harris AJ; Ziskind L; Wigston D
    Nature; 1977 Jul; 268(5617):265-7. PubMed ID: 18677
    [No Abstract]   [Full Text] [Related]  

  • 14. Participation of calcium ions in stannous chloride-induced facilitation of transmitter release from frog motor nerve terminals.
    Hattori T; Maehashi H
    Res Commun Chem Pathol Pharmacol; 1990 May; 68(2):267-70. PubMed ID: 1972290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the realm of membrane capacitance measurements to nerve terminals with complex morphologies.
    Kim MH; von Gersdorff H
    J Physiol; 2010 Jun; 588(Pt 12):2011-2. PubMed ID: 20551018
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effects of aureofuscin on muscle cell membrane and quantal release of acetylcholine (ACh) from the motor nerve terminals].
    Shih YL; Xu YF; Wang WP
    Sheng Li Xue Bao; 1991 Jun; 43(3):286-90. PubMed ID: 1664976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarised nerve terminals.
    Mellow AM
    Nature; 1979 Nov; 282(5734):84-5. PubMed ID: 41184
    [No Abstract]   [Full Text] [Related]  

  • 18. Transmitter quantal size in Torpedo electrocytes is determined by frequency of release.
    Kriebel ME; Fox GQ; Keller B
    Brain Res; 1999 Oct; 845(2):185-91. PubMed ID: 10536197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction.
    Ceccarelli B; Fesce R; Grohovaz F; Haimann C
    J Physiol; 1988 Jul; 401():163-83. PubMed ID: 2902217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural transmitter release: from quantal secretion to exocytosis and beyond. The Fenn Lecture.
    Katz B
    J Neurocytol; 1996 Dec; 25(12):677-86. PubMed ID: 9023717
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.