These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 21728371)
1. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. Yang L; Phua SL; Teo JK; Toh CL; Lau SK; Ma J; Lu X ACS Appl Mater Interfaces; 2011 Aug; 3(8):3026-32. PubMed ID: 21728371 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous enhancements of UV resistance and mechanical properties of polypropylene by incorporation of dopamine-modified clay. Phua SL; Yang L; Toh CL; Guoqiang D; Lau SK; Dasari A; Lu X ACS Appl Mater Interfaces; 2013 Feb; 5(4):1302-9. PubMed ID: 23360646 [TBL] [Abstract][Full Text] [Related]
3. A molecular model for epsilon-caprolactam-based intercalated polymer clay nanocomposite: Integrating modeling and experiments. Sikdar D; Katti DR; Katti KS Langmuir; 2006 Aug; 22(18):7738-47. PubMed ID: 16922558 [TBL] [Abstract][Full Text] [Related]
4. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. Thakur VK; Vennerberg D; Kessler MR ACS Appl Mater Interfaces; 2014 Jun; 6(12):9349-56. PubMed ID: 24841134 [TBL] [Abstract][Full Text] [Related]
5. EPR and rheological study of hybrid interfaces in gold-clay-epoxy nanocomposites. Angelov V; Velichkova H; Ivanov E; Kotsilkova R; Delville MH; Cangiotti M; Fattori A; Ottaviani MF Langmuir; 2014 Nov; 30(44):13411-21. PubMed ID: 25330464 [TBL] [Abstract][Full Text] [Related]
6. Polydopamine-induced biomimetic mineralization strategy to generate hydroxyapatite for the preparation of carbon fiber composites with excellent mechanical properties. Quan G; Wu Y; Wang P; Li W; Li D; Yan Z; Ao Y; Xiao L; Liu Y Int J Biol Macromol; 2024 Oct; 277(Pt 4):134529. PubMed ID: 39111485 [TBL] [Abstract][Full Text] [Related]
7. A simple method to improve the clarity and rheological properties of polymer/clay nanocomposites by using fractionated clay particles. Cipriano BH; Kashiwagi T; Zhang X; Raghavan SR ACS Appl Mater Interfaces; 2009 Jan; 1(1):130-5. PubMed ID: 20355764 [TBL] [Abstract][Full Text] [Related]
8. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance. Zabihi O; Ahmadi M; Khayyam H; Naebe M Sci Rep; 2016 Dec; 6():38194. PubMed ID: 27917901 [TBL] [Abstract][Full Text] [Related]
9. Molecular interactions alter clay and polymer structure in polymer clay nanocomposites. Sikdar D; Katti KS; Katti DR J Nanosci Nanotechnol; 2008 Apr; 8(4):1638-57. PubMed ID: 18572562 [TBL] [Abstract][Full Text] [Related]
10. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites. Park SJ; Seo DI; Lee JR J Colloid Interface Sci; 2002 Jul; 251(1):160-5. PubMed ID: 16290714 [TBL] [Abstract][Full Text] [Related]
11. Mussel-inspired anchoring for patterning cells using polydopamine. Sun K; Xie Y; Ye D; Zhao Y; Cui Y; Long F; Zhang W; Jiang X Langmuir; 2012 Jan; 28(4):2131-6. PubMed ID: 22085048 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of fatigue failure of clay-epoxy nanocomposites. Juwono A; Edward G J Nanosci Nanotechnol; 2006 Dec; 6(12):3943-6. PubMed ID: 17256358 [TBL] [Abstract][Full Text] [Related]
13. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy. Patil PN; Sudarshan K; Sharma SK; Maheshwari P; Rath SK; Patri M; Pujari PK Chemphyschem; 2012 Dec; 13(17):3916-22. PubMed ID: 23129045 [TBL] [Abstract][Full Text] [Related]
14. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. Sa R; Yan Y; Wei Z; Zhang L; Wang W; Tian M ACS Appl Mater Interfaces; 2014 Dec; 6(23):21730-8. PubMed ID: 25401775 [TBL] [Abstract][Full Text] [Related]
15. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites. Yang L; Kong J; Yee WA; Liu W; Phua SL; Toh CL; Huang S; Lu X Nanoscale; 2012 Aug; 4(16):4968-71. PubMed ID: 22797422 [TBL] [Abstract][Full Text] [Related]
16. Organic-inorganic hybrids from renewable plant oils and clay. Uyama H; Kuwabara M; Tsujimoto T; Nakano M; Usuki A; Kobayashi S Macromol Biosci; 2004 Mar; 4(3):354-60. PubMed ID: 15468227 [TBL] [Abstract][Full Text] [Related]
17. PBAT based nanocomposites for medical and industrial applications. Fukushima K; Wu MH; Bocchini S; Rasyida A; Yang MC Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1331-51. PubMed ID: 24364930 [TBL] [Abstract][Full Text] [Related]
18. Mussel-inspired polydopamine coated hollow carbon microspheres, a novel versatile filler for fabrication of high performance syntactic foams. Zhang L; Roy S; Chen Y; Chua EK; See KY; Hu X; Liu M ACS Appl Mater Interfaces; 2014; 6(21):18644-52. PubMed ID: 25286083 [TBL] [Abstract][Full Text] [Related]
19. Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. Fernández-Saavedra R; Darder M; Gómez-Avilés A; Aranda P; Ruiz-Hitzky E J Nanosci Nanotechnol; 2008 Apr; 8(4):1741-50. PubMed ID: 18572573 [TBL] [Abstract][Full Text] [Related]
20. Morphology and thermal properties of clay/PMMA nanocomposites obtained by miniemulsion polymerization. García-Chávez KI; Hernández-Escobar CA; Flores-Gallardo SG; Soriano-Corral F; Saucedo-Salazar E; Zaragoza-Contreras EA Micron; 2013 Jun; 49():21-7. PubMed ID: 23541871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]