BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21728583)

  • 1. β-Connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy.
    Marchetti S; Sbrana F; Toscano A; Fratini E; Carlà M; Vassalli M; Tiribilli B; Pacini A; Gambi CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051919. PubMed ID: 21728583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
    Staple DB; Payne SH; Reddin AL; Kreuzer HJ
    Phys Rev Lett; 2008 Dec; 101(24):248301. PubMed ID: 19113678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic light scattering and atomic force microscopy imaging on fragments of beta-connectin from human cardiac muscle.
    Marchetti S; Sbrana F; Raccis R; Lanzi L; Gambi CM; Vassalli M; Tiribilli B; Pacini A; Toscano A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021910. PubMed ID: 18352054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
    Zhang B; Xu G; Evans JS
    Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.
    Zhang B; Evans JS
    Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule measurement of elasticity of serine-, glutamate- and lysine-rich repeats of invertebrate connectin reveals that its elasticity is caused entropically by random coil structure.
    Fukuzawa A; Hiroshima M; Maruyama K; Yonezawa N; Tokunaga M; Kimura S
    J Muscle Res Cell Motil; 2002; 23(5-6):449-53. PubMed ID: 12785096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanics and structure of titin oligomers explored with atomic force microscopy.
    Kellermayer MS; Bustamante C; Granzier HL
    Biochim Biophys Acta; 2003 Jun; 1604(2):105-14. PubMed ID: 12765767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanical fingerprint of a parallel polyprotein dimer.
    Sarkar A; Caamano S; Fernandez JM
    Biophys J; 2007 Feb; 92(4):L36-8. PubMed ID: 17158577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents.
    Marino M; Svergun DI; Kreplak L; Konarev PV; Maco B; Labeit D; Mayans O
    J Muscle Res Cell Motil; 2005; 26(6-8):355-65. PubMed ID: 16341830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete unfolding of the titin molecule under external force.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    J Struct Biol; 1998; 122(1-2):197-205. PubMed ID: 9724621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency modulation atomic force microscopy reveals individual intermediates associated with each unfolded I27 titin domain.
    Higgins MJ; Sader JE; Jarvis SP
    Biophys J; 2006 Jan; 90(2):640-7. PubMed ID: 16258037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality.
    Harris NC; Kiang CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041912. PubMed ID: 19518261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties.
    Pinotsis N; Chatziefthimiou SD; Berkemeier F; Beuron F; Mavridis IM; Konarev PV; Svergun DI; Morris E; Rief M; Wilmanns M
    PLoS Biol; 2012 Feb; 10(2):e1001261. PubMed ID: 22347812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding forces of titin and fibronectin domains directly measured by AFM.
    Rief M; Gautel M; Gaub HE
    Adv Exp Med Biol; 2000; 481():129-36; discussion 137-41. PubMed ID: 10987070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ising-like model for protein mechanical unfolding.
    Imparato A; Pelizzola A; Zamparo M
    Phys Rev Lett; 2007 Apr; 98(14):148102. PubMed ID: 17501316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of temperature on mechanical resistance of the native and intermediate states of I27.
    Taniguchi Y; Brockwell DJ; Kawakami M
    Biophys J; 2008 Dec; 95(11):5296-305. PubMed ID: 18775959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of cardiac titin's N2B-region by single-molecule atomic force spectroscopy.
    Leake MC; Grützner A; Krüger M; Linke WA
    J Struct Biol; 2006 Aug; 155(2):263-72. PubMed ID: 16682230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.