These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 21728592)
1. Double negative differential thermal resistance induced by nonlinear on-site potentials. Ai BQ; Zhong WR; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):052102. PubMed ID: 21728592 [TBL] [Abstract][Full Text] [Related]
2. Heat conduction in the nonlinear response regime: scaling, boundary jumps, and negative differential thermal resistance. He D; Ai BQ; Chan HK; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041131. PubMed ID: 20481701 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear thermal conductance in single-wall carbon nanotubes: negative differential thermal resistance. Ai BQ; An M; Zhong WR J Chem Phys; 2013 Jan; 138(3):034708. PubMed ID: 23343294 [TBL] [Abstract][Full Text] [Related]
4. Scaling analysis of negative differential thermal resistance. Chan HK; He D; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052126. PubMed ID: 25353758 [TBL] [Abstract][Full Text] [Related]
5. Anomalous negative differential thermal resistance in a momentum-conserving lattice. Zhong WR; Zhang MP; Ai BQ; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031130. PubMed ID: 22060351 [TBL] [Abstract][Full Text] [Related]
6. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices. Cao X; He D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032135. PubMed ID: 26465454 [TBL] [Abstract][Full Text] [Related]
7. Heat current limiter and constant heat current source. Wu J; Wang L; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061112. PubMed ID: 23005056 [TBL] [Abstract][Full Text] [Related]
8. Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor. Li N; Zhan F; Hänggi P; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011125. PubMed ID: 19658671 [TBL] [Abstract][Full Text] [Related]
9. Negative differential thermal resistance in one-dimensional hard-point gas models. Luo R Phys Rev E; 2019 Mar; 99(3-1):032138. PubMed ID: 30999545 [TBL] [Abstract][Full Text] [Related]
10. Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model. Shao ZG; Yang L; Chan HK; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061119. PubMed ID: 19658485 [TBL] [Abstract][Full Text] [Related]
11. Thermal rectification and negative differential thermal resistance in a driven two segment classical Heisenberg chain. Bagchi D J Phys Condens Matter; 2013 Dec; 25(49):496006. PubMed ID: 24195913 [TBL] [Abstract][Full Text] [Related]
12. Heat conduction in driven Frenkel-Kontorova lattices: thermal pumping and resonance. Ai BQ; He D; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031124. PubMed ID: 20365714 [TBL] [Abstract][Full Text] [Related]
13. Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures. Li F; Wang J; Xia G; Li Z Nanoscale; 2019 Jul; 11(27):13051-13057. PubMed ID: 31265030 [TBL] [Abstract][Full Text] [Related]
15. Crossover from Fermi-Pasta-Ulam to normal diffusive behavior in heat conduction through open anharmonic lattices. Roy D Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041102. PubMed ID: 23214524 [TBL] [Abstract][Full Text] [Related]
16. Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices? Li B; Zhao H; Hu B Phys Rev Lett; 2001 Jan; 86(1):63-66. PubMed ID: 11136094 [TBL] [Abstract][Full Text] [Related]
17. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential. Yang L; Li N; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062122. PubMed ID: 25615059 [TBL] [Abstract][Full Text] [Related]
18. Normal heat conduction in a chain with a weak interparticle anharmonic potential. Pereira E; Falcao R Phys Rev Lett; 2006 Mar; 96(10):100601. PubMed ID: 16605719 [TBL] [Abstract][Full Text] [Related]
19. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Terraneo M; Peyrard M; Casati G Phys Rev Lett; 2002 Mar; 88(9):094302. PubMed ID: 11864013 [TBL] [Abstract][Full Text] [Related]
20. Stretch diffusion and heat conduction in one-dimensional nonlinear lattices. Gao Z; Li N; Li B Phys Rev E; 2016 Mar; 93(3):032130. PubMed ID: 27078315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]