These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21728600)

  • 1. Theory of volumetric capacitance of an electric double-layer supercapacitor.
    Skinner B; Chen T; Loth MS; Shklovskii BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056102. PubMed ID: 21728600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-mean-field theory of anomalously large double layer capacitance.
    Loth MS; Skinner B; Shklovskii BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016107. PubMed ID: 20866689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method.
    Wang M; Duong le D; Mai NT; Kim S; Kim Y; Seo H; Kim YC; Jang W; Lee Y; Suhr J; Nam JD
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1348-54. PubMed ID: 25545033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalously large capacitance of an ionic liquid described by the restricted primitive model.
    Loth MS; Skinner B; Shklovskii BI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056102. PubMed ID: 21230540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes.
    Nigam R; Kar KK
    Langmuir; 2022 Oct; 38(40):12235-12247. PubMed ID: 36164778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores.
    Xing L; Vatamanu J; Borodin O; Bedrov D
    J Phys Chem Lett; 2013 Jan; 4(1):132-40. PubMed ID: 26291225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon.
    Huang ZH; Liu TY; Song Y; Li Y; Liu XX
    Nanoscale; 2017 Sep; 9(35):13119-13127. PubMed ID: 28849857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid.
    Pak AJ; Paek E; Hwang GS
    Phys Chem Chem Phys; 2013 Dec; 15(45):19741-7. PubMed ID: 24141286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Chemistry for New Material: Highly Dense Mesoporous Carbon Electrode for Supercapacitors with High Areal Capacitance.
    Chang L; Sun K; Hu YH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33162-33169. PubMed ID: 30192130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance supercapacitor electrode materials prepared from various pollens.
    Zhang L; Zhang F; Yang X; Leng K; Huang Y; Chen Y
    Small; 2013 Apr; 9(8):1342-7. PubMed ID: 23494916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6.
    Chen K; Liu F; Xue D; Komarneni S
    Nanoscale; 2015 Jan; 7(2):432-9. PubMed ID: 25412769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Metal-Free Supercapacitor Electrode Material with a Record High Volumetric Capacitance over 800 F cm(-3).
    Xu Y; Tao Y; Zheng X; Ma H; Luo J; Kang F; Yang QH
    Adv Mater; 2015 Dec; 27(48):8082-7. PubMed ID: 26540013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamics of capacitive charging and desalination by porous electrodes.
    Biesheuvel PM; Bazant MZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031502. PubMed ID: 20365735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seawater electrolyte-mediated high volumetric MXene-based electrochemical symmetric supercapacitors.
    Xia QX; Shinde NM; Zhang T; Yun JM; Zhou A; Mane RS; Mathur S; Kim KH
    Dalton Trans; 2018 Jul; 47(26):8676-8682. PubMed ID: 29897071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Insights into the Complex Relationship between Capacitance and Pore Morphology in Nanoporous Carbon-based Supercapacitors.
    Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34659-34667. PubMed ID: 27936557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.