These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21728621)

  • 1. Coarse graining for synchronization in directed networks.
    Zeng A; Lü L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056123. PubMed ID: 21728621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral coarse graining and synchronization in oscillator networks.
    Gfeller D; De Los Rios P
    Phys Rev Lett; 2008 May; 100(17):174104. PubMed ID: 18518293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability.
    Dadashi M; Barjasteh I; Jalili M
    Chaos; 2010 Dec; 20(4):043119. PubMed ID: 21198089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral coarse graining for random walks in bipartite networks.
    Wang Y; Zeng A; Di Z; Fan Y
    Chaos; 2013 Mar; 23(1):013104. PubMed ID: 23556941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing synchronizability of diffusively coupled dynamical networks: a survey.
    Jalili M
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1009-22. PubMed ID: 24808517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multiscale coarse-graining method. VIII. Multiresolution hierarchical basis functions and basis function selection in the construction of coarse-grained force fields.
    Das A; Andersen HC
    J Chem Phys; 2012 May; 136(19):194113. PubMed ID: 22612086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How heterogeneity in connections and cycles matter for synchronization of complex networks.
    Lacerda JC; Freitas C; Macau EEN; Kurths J
    Chaos; 2021 Nov; 31(11):113134. PubMed ID: 34881600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and directionality in complex networks.
    Son SW; Kim BJ; Hong H; Jeong H
    Phys Rev Lett; 2009 Nov; 103(22):228702. PubMed ID: 20366129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First encounters on Watts-Strogatz networks and Barabási-Albert networks.
    Yuan Z; Chen Y; Gao L; Peng J
    Chaos; 2022 Dec; 32(12):123114. PubMed ID: 36587344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behaviors in directed networks.
    Park SM; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026114. PubMed ID: 17025510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple, distance-dependent formulation of the Watts-Strogatz model for directed and undirected small-world networks.
    Song HF; Wang XJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062801. PubMed ID: 25615142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems.
    Katsoulakis MA; Plechác P
    J Chem Phys; 2013 Aug; 139(7):074115. PubMed ID: 23968080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reexamination of explosive synchronization in scale-free networks: the effect of disassortativity.
    Li P; Zhang K; Xu X; Zhang J; Small M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042803. PubMed ID: 23679469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-graining and self-dissimilarity of complex networks.
    Itzkovitz S; Levitt R; Kashtan N; Milo R; Itzkovitz M; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016127. PubMed ID: 15697678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure tolerance of spike phase synchronization in coupled neural networks.
    Jalili M
    Chaos; 2011 Sep; 21(3):033126. PubMed ID: 21974661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular networks with delayed coupling: synchronization and frequency control.
    Maslennikov OV; Nekorkin VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012901. PubMed ID: 25122354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization in multiplex models of neuron-glial systems: Small-world topology and inhibitory coupling.
    Makovkin S; Laptyeva T; Jalan S; Ivanchenko M
    Chaos; 2021 Nov; 31(11):113111. PubMed ID: 34881599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.