These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21728655)

  • 1. Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056315. PubMed ID: 21728655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023014. PubMed ID: 25768604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrainment by a rotating magnetic field of a ferrofluid contained in a cylinder.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026312. PubMed ID: 21929095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrainment by a rotating magnetic field of a ferrofluid contained in a sphere.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046313. PubMed ID: 22181267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state hydrodynamics of a viscous incompressible fluid with spinning particles.
    Felderhof BU
    J Chem Phys; 2011 Dec; 135(23):234901. PubMed ID: 22191899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow of a ferrofluid down a tube in an oscillating magnetic field.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021508. PubMed ID: 11497590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic hydrodynamics of magnetic and dielectric fluids in interaction with the electromagnetic field.
    Felderhof BU
    J Chem Phys; 2004 Feb; 120(8):3598-603. PubMed ID: 15268521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neutrally stable shell in a Stokes flow: a rotational Taylor's sheet.
    Orsi G; De Simone A; Maurini C; Vidoli S
    Proc Math Phys Eng Sci; 2019 Jul; 475(2227):20190178. PubMed ID: 31423098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Nov; 123(18):184903. PubMed ID: 16292935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming of a deformable slab in a viscous incompressible fluid with inertia.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063014. PubMed ID: 26764811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jittery velocity relaxation of an elastic sphere immersed in a viscous incompressible fluid.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033001. PubMed ID: 24730931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-consistent generalized Langevin-equation theory for liquids of nonspherically interacting particles.
    Elizondo-Aguilera LF; Zubieta Rico PF; Ruiz-Estrada H; Alarcón-Waess O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052301. PubMed ID: 25493790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusiophoresis in a suspension of charge-regulating colloidal spheres.
    Keh HJ; Li YL
    Langmuir; 2007 Jan; 23(3):1061-72. PubMed ID: 17241015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of Streaming in an Electrified Maxwell Fluid Sheet Influenced by a Vertical Periodic Field in the Absence of Surface Charges.
    El-Dib YO; Matoog RT
    J Colloid Interface Sci; 2000 Sep; 229(1):29-52. PubMed ID: 10942540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Magnetotaxis of Microbot: Magnetophoresis versus Self-Swimming.
    Ng WM; Che HX; Guo C; Liu C; Low SC; Chieh Chan DJ; Mohamud R; Lim J
    Langmuir; 2018 Jul; 34(27):7971-7980. PubMed ID: 29882671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Settling slip velocity of a spherical particle in an unbounded micropolar fluid.
    El-Sapa S
    Eur Phys J E Soft Matter; 2019 Mar; 42(3):32. PubMed ID: 30879156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A derivation of Maxwell's equations using the Heaviside notation.
    Hampshire DP
    Philos Trans A Math Phys Eng Sci; 2018 Oct; 376(2134):. PubMed ID: 30373937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the immersed interface method for solving time-domain Maxwell's equations in materials with curved dielectric interfaces.
    Deng S
    Comput Phys Commun; 2008 Dec; 179(11):791-800. PubMed ID: 20559461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.
    Hossan MR; Dillon R; Roy AK; Dutta P
    J Colloid Interface Sci; 2013 Mar; 394():619-29. PubMed ID: 23348000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of self-electrophoretic motion of a spherical particle in a nanotube: effect of nonuniform surface charge density.
    Qian S; Joo SW
    Langmuir; 2008 May; 24(9):4778-84. PubMed ID: 18366230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.